ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 815 papers shown
Title
A Variational Approach to Bayesian Phylogenetic Inference
A Variational Approach to Bayesian Phylogenetic InferenceJournal of machine learning research (JMLR), 2022
Cheng Zhang
IV FrederickA.Matsen
BDL
121
22
0
16 Apr 2022
Conditional Injective Flows for Bayesian Imaging
Conditional Injective Flows for Bayesian ImagingIEEE Transactions on Computational Imaging (TCI), 2022
AmirEhsan Khorashadizadeh
K. Kothari
Leonardo Salsi
Ali Aghababaei Harandi
Maarten V. de Hoop
Ivan Dokmanić
MedIm
292
17
0
15 Apr 2022
A Personalized Dialogue Generator with Implicit User Persona Detection
A Personalized Dialogue Generator with Implicit User Persona DetectionInternational Conference on Computational Linguistics (COLING), 2022
Itsugun Cho
Dongyang Wang
Ryota Takahashi
Hiroaki Saito
154
20
0
15 Apr 2022
Neural Processes with Stochastic Attention: Paying more attention to the
  context dataset
Neural Processes with Stochastic Attention: Paying more attention to the context datasetInternational Conference on Learning Representations (ICLR), 2022
Mingyu Kim
Kyeongryeol Go
Se-Young Yun
128
20
0
11 Apr 2022
Statistical Model Criticism of Variational Auto-Encoders
Statistical Model Criticism of Variational Auto-Encoders
Claartje Barkhof
Wilker Aziz
DRL
172
3
0
06 Apr 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learningNeural Information Processing Systems (NeurIPS), 2022
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OODCML
345
148
0
30 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Alleviating Adversarial Attacks on Variational Autoencoders with MCMCNeural Information Processing Systems (NeurIPS), 2022
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAMLDRL
189
14
0
18 Mar 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical ModelsInternational Conference on Machine Learning (ICML), 2022
Tomas Geffner
Justin Domke
194
5
0
08 Mar 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inferenceInternational Conference on Learning Representations (ICLR), 2022
Manuel Glöckler
Michael Deistler
Jakob H. Macke
523
53
0
08 Mar 2022
PAC-Bayesian Lifelong Learning For Multi-Armed Bandits
PAC-Bayesian Lifelong Learning For Multi-Armed BanditsData mining and knowledge discovery (DMKD), 2022
H. Flynn
David Reeb
M. Kandemir
Jan Peters
182
8
0
07 Mar 2022
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Recursive Monte Carlo and Variational Inference with Auxiliary VariablesConference on Uncertainty in Artificial Intelligence (UAI), 2022
Alexander K. Lew
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
184
12
0
05 Mar 2022
Robust PAC$^m$: Training Ensemble Models Under Misspecification and
  Outliers
Robust PACm^mm: Training Ensemble Models Under Misspecification and OutliersIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
174
7
0
03 Mar 2022
Learning Conditional Variational Autoencoders with Missing Covariates
Learning Conditional Variational Autoencoders with Missing CovariatesPattern Recognition (Pattern Recogn.), 2022
S. Ramchandran
Gleb Tikhonov
Otto Lönnroth
Pekka Tiikkainen
Harri Lähdesmäki
CML
158
22
0
02 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical testsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
202
20
0
02 Mar 2022
VaiPhy: a Variational Inference Based Algorithm for Phylogeny
VaiPhy: a Variational Inference Based Algorithm for PhylogenyNeural Information Processing Systems (NeurIPS), 2022
Hazal Koptagel
Oskar Kviman
Harald Melin
Negar Safinianaini
J. Lagergren
172
23
0
01 Mar 2022
Estimators of Entropy and Information via Inference in Probabilistic
  Models
Estimators of Entropy and Information via Inference in Probabilistic ModelsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Feras A. Saad
Marco F. Cusumano-Towner
Vikash K. Mansinghka
219
5
0
24 Feb 2022
On PAC-Bayesian reconstruction guarantees for VAEs
On PAC-Bayesian reconstruction guarantees for VAEsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Badr-Eddine Chérief-Abdellatif
Yuyang Shi
Arnaud Doucet
Benjamin Guedj
DRL
188
21
0
23 Feb 2022
Flat Latent Manifolds for Human-machine Co-creation of Music
Flat Latent Manifolds for Human-machine Co-creation of Music
Nutan Chen
Djalel Benbouzid
Francesco Ferroni
Mathis Nitschke
Luciano Pinna
Patrick van der Smagt
210
1
0
23 Feb 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein OperatorsNeural Information Processing Systems (NeurIPS), 2022
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
409
25
0
19 Feb 2022
An Introduction to Neural Data Compression
An Introduction to Neural Data CompressionFoundations and Trends in Computer Graphics and Vision (Found. Trends Comput. Graph. Vis.), 2022
Jianlong Wu
Stephan Mandt
Lucas Theis
379
141
0
14 Feb 2022
Supported Policy Optimization for Offline Reinforcement Learning
Supported Policy Optimization for Offline Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2022
Jialong Wu
Haixu Wu
Zihan Qiu
Jianmin Wang
Mingsheng Long
OffRL
266
85
0
13 Feb 2022
Bayesian Nonparametrics for Offline Skill Discovery
Bayesian Nonparametrics for Offline Skill DiscoveryInternational Conference on Machine Learning (ICML), 2022
Valentin Villecroze
H. Braviner
Panteha Naderian
Chris J. Maddison
Gabriel Loaiza-Ganem
BDLOffRL
246
9
0
09 Feb 2022
Enhancing variational generation through self-decomposition
Enhancing variational generation through self-decompositionIEEE Access (IEEE Access), 2022
Andrea Asperti
Laura Bugo
Daniele Filippini
DRL
176
2
0
06 Feb 2022
Learning Representation from Neural Fisher Kernel with Low-rank
  Approximation
Learning Representation from Neural Fisher Kernel with Low-rank ApproximationInternational Conference on Learning Representations (ICLR), 2022
Ruixiang Zhang
Shuangfei Zhai
Etai Littwin
J. Susskind
SSL
164
5
0
04 Feb 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
257
8
0
03 Feb 2022
Variational Neural Cellular Automata
Variational Neural Cellular AutomataInternational Conference on Learning Representations (ICLR), 2022
Rasmus Berg Palm
Miguel González Duque
Shyam Sudhakaran
S. Risi
BDL
211
32
0
28 Jan 2022
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo
  Objectives
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
125
4
0
26 Jan 2022
Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in
  Diffusion Probabilistic Models
Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic ModelsInternational Conference on Learning Representations (ICLR), 2022
Fan Bao
Chongxuan Li
Jun Zhu
Bo Zhang
DiffM
330
388
0
17 Jan 2022
Reconstruction of Incomplete Wildfire Data using Deep Generative Models
Reconstruction of Incomplete Wildfire Data using Deep Generative Models
T. Ivek
Domagoj Vlah
SyDa
171
8
0
16 Jan 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
487
139
0
02 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance SamplingInternational Conference on Machine Learning (ICML), 2021
M. Jankowiak
Du Phan
BDL
221
13
0
22 Dec 2021
Multimodal Adversarially Learned Inference with Factorized
  Discriminators
Multimodal Adversarially Learned Inference with Factorized DiscriminatorsAAAI Conference on Artificial Intelligence (AAAI), 2021
Wenxue Chen
Jianke Zhu
151
3
0
20 Dec 2021
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Fei Ye
A. Bors
CLL
178
13
0
15 Dec 2021
Score-Based Generative Modeling with Critically-Damped Langevin
  Diffusion
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn
Arash Vahdat
Karsten Kreis
DiffM
582
267
0
14 Dec 2021
Domain Adaptation and Autoencoder Based Unsupervised Speech Enhancement
Domain Adaptation and Autoencoder Based Unsupervised Speech Enhancement
Yi Li
Yang Sun
K. Horoshenkov
S. M. Naqvi
114
30
0
09 Dec 2021
Estimating the Value-at-Risk by Temporal VAE
Estimating the Value-at-Risk by Temporal VAE
Robert Sicks
S. Grimm
R. Korn
Ivo Richert
171
7
0
03 Dec 2021
The Exponentially Tilted Gaussian Prior for Variational Autoencoders
The Exponentially Tilted Gaussian Prior for Variational Autoencoders
Griffin Floto
Stefan Kremer
Mihai Nica
DRL
127
1
0
30 Nov 2021
Variational Gibbs Inference for Statistical Model Estimation from
  Incomplete Data
Variational Gibbs Inference for Statistical Model Estimation from Incomplete DataJournal of machine learning research (JMLR), 2021
Vaidotas Šimkus
Benjamin Rhodes
Michael U. Gutmann
246
9
0
25 Nov 2021
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
Jianlong Wu
Stephan Mandt
224
27
0
23 Nov 2021
Exploring Story Generation with Multi-task Objectives in Variational
  Autoencoders
Exploring Story Generation with Multi-task Objectives in Variational AutoencodersAustralasian Language Technology Association Workshop (ALTA), 2021
Zhuohan Xie
Trevor Cohn
Jey Han Lau
DRL
108
7
0
15 Nov 2021
Entropy optimized semi-supervised decomposed vector-quantized
  variational autoencoder model based on transfer learning for multiclass text
  classification and generation
Entropy optimized semi-supervised decomposed vector-quantized variational autoencoder model based on transfer learning for multiclass text classification and generation
Shivani Malhotra
Vinay Kumar
A. K. Agarwal
DRL
103
0
0
10 Nov 2021
Variational Inference with Holder Bounds
Variational Inference with Holder Bounds
Junya Chen
Danni Lu
Zidi Xiu
Ke Bai
Lawrence Carin
Chenyang Tao
115
7
0
04 Nov 2021
Pseudo-Spherical Contrastive Divergence
Pseudo-Spherical Contrastive DivergenceNeural Information Processing Systems (NeurIPS), 2021
Lantao Yu
Jiaming Song
Yang Song
Stefano Ermon
209
7
0
01 Nov 2021
Adaptive Importance Sampling meets Mirror Descent: a Bias-variance
  tradeoff
Adaptive Importance Sampling meets Mirror Descent: a Bias-variance tradeoffInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Anna Korba
Franccois Portier
185
16
0
29 Oct 2021
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in
  Combinatorial Spaces
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial SpacesNeural Information Processing Systems (NeurIPS), 2021
Kirill Struminsky
Artyom Gadetsky
D. Rakitin
Danil Karpushkin
Dmitry Vetrov
BDL
246
9
0
28 Oct 2021
Preventing posterior collapse in variational autoencoders for text
  generation via decoder regularization
Preventing posterior collapse in variational autoencoders for text generation via decoder regularization
Alban Petit
Caio Corro
DRL
205
3
0
28 Oct 2021
VACA: Design of Variational Graph Autoencoders for Interventional and
  Counterfactual Queries
VACA: Design of Variational Graph Autoencoders for Interventional and Counterfactual Queries
Pablo Sánchez-Martín
Miriam Rateike
Isabel Valera
CMLBDL
145
19
0
27 Oct 2021
What Do We Mean by Generalization in Federated Learning?
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OODFedML
264
94
0
27 Oct 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
281
8
0
26 Oct 2021
Regularizing Variational Autoencoder with Diversity and Uncertainty
  Awareness
Regularizing Variational Autoencoder with Diversity and Uncertainty AwarenessInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Dazhong Shen
Chuan Qin
Chao Wang
Hengshu Zhu
Enhong Chen
Hui Xiong
UQCV
123
21
0
24 Oct 2021
Previous
123...567...151617
Next