ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 815 papers shown
Title
PriorVAE: Encoding spatial priors with VAEs for small-area estimation
PriorVAE: Encoding spatial priors with VAEs for small-area estimationJournal of the Royal Society Interface (J. R. Soc. Interface), 2021
Elizaveta Semenova
Yidan Xu
A. Howes
T. Rashid
Samir Bhatt
Swapnil Mishra
Seth Flaxman
226
14
0
20 Oct 2021
Guiding Visual Question Generation
Guiding Visual Question Generation
Nihir Vedd
Zixu Wang
Marek Rei
Yishu Miao
Lucia Specia
303
25
0
15 Oct 2021
Hindsight Network Credit Assignment: Efficient Credit Assignment in
  Networks of Discrete Stochastic Units
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
K. Young
116
0
0
14 Oct 2021
The Neglected Sibling: Isotropic Gaussian Posterior for VAE
The Neglected Sibling: Isotropic Gaussian Posterior for VAE
Lan Zhang
Wray Buntine
Ehsan Shareghi
DRL
102
0
0
14 Oct 2021
Networked Time Series Prediction with Incomplete Data via Generative
  Adversarial Network
Networked Time Series Prediction with Incomplete Data via Generative Adversarial Network
Yichen Zhu
Bo Jiang
Haiming Jin
Mengtian Zhang
Feng Gao
Jianqiang Huang
Tao Lin
Xinbing Wang
GNNAI4TS
214
8
0
05 Oct 2021
Variational Marginal Particle Filters
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
186
13
0
30 Sep 2021
Unaligned Image-to-Image Translation by Learning to Reweight
Unaligned Image-to-Image Translation by Learning to ReweightIEEE International Conference on Computer Vision (ICCV), 2021
Shaoan Xie
Biwei Huang
Yanwu Xu
Kun Zhang
EgoV
164
25
0
24 Sep 2021
LDC-VAE: A Latent Distribution Consistency Approach to Variational
  AutoEncoders
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
178
2
0
22 Sep 2021
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale
  Confirmatory Item Factor Analysis
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale Confirmatory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
CML
129
1
0
20 Sep 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of
  Coregionalization
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
110
19
0
20 Sep 2021
A Conditional Generative Matching Model for Multi-lingual Reply
  Suggestion
A Conditional Generative Matching Model for Multi-lingual Reply Suggestion
Budhaditya Deb
Guoqing Zheng
Milad Shokouhi
Ahmed Hassan Awadallah
128
1
0
15 Sep 2021
You should evaluate your language model on marginal likelihood over
  tokenisations
You should evaluate your language model on marginal likelihood over tokenisationsConference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Kris Cao
Laura Rimell
243
30
0
06 Sep 2021
Latent Space Energy-Based Model of Symbol-Vector Coupling for Text
  Generation and Classification
Latent Space Energy-Based Model of Symbol-Vector Coupling for Text Generation and ClassificationInternational Conference on Machine Learning (ICML), 2021
Bo Pang
Ying Nian Wu
141
19
0
26 Aug 2021
Robust outlier detection by de-biasing VAE likelihoods
Robust outlier detection by de-biasing VAE likelihoods
Kushal Chauhan
Barath Mohan Umapathi
Pradeep Shenoy
Manish Gupta
D. Sridharan
DRL
274
14
0
19 Aug 2021
Regularized Sequential Latent Variable Models with Adversarial Neural
  Networks
Regularized Sequential Latent Variable Models with Adversarial Neural NetworksInternational Conference on Machine Learning and Applications (ICMLA), 2021
Jin Huang
Ming Xiao
BDLGNNDRLGAN
91
3
0
10 Aug 2021
Finetuning Pretrained Transformers into Variational Autoencoders
Finetuning Pretrained Transformers into Variational AutoencodersFirst Workshop on Insights from Negative Results in NLP (Insights), 2021
Seongmin Park
Jihwa Lee
244
22
0
05 Aug 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient NoiseNeural Information Processing Systems (NeurIPS), 2021
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
220
42
0
21 Jul 2021
Generative Models for Security: Attacks, Defenses, and Opportunities
Generative Models for Security: Attacks, Defenses, and Opportunities
L. A. Bauer
Vincent Bindschaedler
193
5
0
21 Jul 2021
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAENeural Information Processing Systems (NeurIPS), 2021
Qingzhong Ai
Lirong He
Shiyu Liu
Zenglin Xu
BDL
105
4
0
20 Jul 2021
The Effects of Invertibility on the Representational Complexity of
  Encoders in Variational Autoencoders
The Effects of Invertibility on the Representational Complexity of Encoders in Variational AutoencodersInternational Conference on Learning Representations (ICLR), 2021
Divyansh Pareek
Andrej Risteski
DRL
117
0
0
09 Jul 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian AnnealingNeural Information Processing Systems (NeurIPS), 2021
Tomas Geffner
Justin Domke
249
41
0
08 Jul 2021
Parameterization of Forced Isotropic Turbulent Flow using Autoencoders
  and Generative Adversarial Networks
Parameterization of Forced Isotropic Turbulent Flow using Autoencoders and Generative Adversarial Networks
Kanishk
Tanishk Nandal
Prince Tyagi
R. Singh
GANOODAI4CE
44
0
0
08 Jul 2021
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive
  Learners With FlatNCE
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE
Junya Chen
Zhe Gan
Xuan Li
Qing Guo
Liqun Chen
...
Belinda Zeng
Wenlian Lu
Fan Li
Lawrence Carin
Chenyang Tao
190
31
0
02 Jul 2021
Offline-to-Online Reinforcement Learning via Balanced Replay and
  Pessimistic Q-Ensemble
Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-Ensemble
Seunghyun Lee
Younggyo Seo
Kimin Lee
Pieter Abbeel
Jinwoo Shin
OffRLOnRL
200
238
0
01 Jul 2021
Monte Carlo Variational Auto-Encoders
Monte Carlo Variational Auto-EncodersInternational Conference on Machine Learning (ICML), 2021
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDLDRL
109
47
0
30 Jun 2021
Continuous Latent Process Flows
Continuous Latent Process FlowsNeural Information Processing Systems (NeurIPS), 2021
Ruizhi Deng
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
AI4TS
377
18
0
29 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEsInternational Conference on Learning Representations (ICLR), 2021
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CMLDRL
249
11
0
25 Jun 2021
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image
  Generation
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation
Xiaohui Zeng
R. Urtasun
R. Zemel
Sanja Fidler
Renjie Liao
DiffM
85
2
0
25 Jun 2021
Nested Variational Inference
Nested Variational InferenceNeural Information Processing Systems (NeurIPS), 2021
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
156
23
0
21 Jun 2021
A variational autoencoder approach for choice set generation and
  implicit perception of alternatives in choice modeling
A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modelingTransportation Research Part B: Methodological (TRPBM), 2021
Rui Yao
S. Bekhor
DRL
122
17
0
19 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
174
24
0
18 Jun 2021
Robust Out-of-Distribution Detection on Deep Probabilistic Generative
  Models
Robust Out-of-Distribution Detection on Deep Probabilistic Generative Models
Jaemoo Choi
Changyeon Yoon
Jeongwoo Bae
Myung-joo Kang
OODD
201
4
0
15 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance LearningInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDLUQCV
184
31
0
14 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian AutoencodersNeural Information Processing Systems (NeurIPS), 2021
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
167
14
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent SpaceNeural Information Processing Systems (NeurIPS), 2021
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
394
797
0
10 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effectConference on Uncertainty in Artificial Intelligence (UAI), 2021
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
232
45
0
10 Jun 2021
EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
Qi Ma
S. Ghosh
129
5
0
09 Jun 2021
On Memorization in Probabilistic Deep Generative Models
On Memorization in Probabilistic Deep Generative ModelsNeural Information Processing Systems (NeurIPS), 2021
G. V. D. Burg
Christopher K. I. Williams
TDI
262
78
0
06 Jun 2021
Consistency Regularization for Variational Auto-Encoders
Consistency Regularization for Variational Auto-EncodersNeural Information Processing Systems (NeurIPS), 2021
Samarth Sinha
Adji Bousso Dieng
CML
200
73
0
31 May 2021
An overview of deep learning techniques for epileptic seizures detection
  and prediction based on neuroimaging modalities: Methods, challenges, and
  future works
An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works
A. Shoeibi
Parisa Moridian
Marjane Khodatars
Navid Ghassemi
M. Jafari
...
Juan M Gorriz
Javier Ramírez
Abbas Khosravi
S. Nahavandi
U. Acharya
353
62
0
29 May 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary VariablesInternational Conference on Machine Learning (ICML), 2021
Alek Dimitriev
Mingyuan Zhou
100
12
0
28 May 2021
Generative Text Modeling through Short Run Inference
Generative Text Modeling through Short Run InferenceConference of the European Chapter of the Association for Computational Linguistics (EACL), 2021
Bo Pang
Erik Nijkamp
Tian Han
Ying Nian Wu
SyDaBDLDRL
198
5
0
27 May 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives
  to Learn Generative Model and Neural Adaptive Proposal for Time Series
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time SeriesInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDLAI4TS
108
2
0
20 May 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Boosting Variational Inference With Locally Adaptive Step-SizesInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
110
2
0
19 May 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
152
10
0
13 May 2021
A likelihood approach to nonparametric estimation of a singular
  distribution using deep generative models
A likelihood approach to nonparametric estimation of a singular distribution using deep generative modelsJournal of machine learning research (JMLR), 2021
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
449
22
0
09 May 2021
Generalized Multimodal ELBO
Generalized Multimodal ELBOInternational Conference on Learning Representations (ICLR), 2021
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
222
117
0
06 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational AutoencoderIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
325
82
0
30 Apr 2021
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
Gido M. van de Ven
Zhe Li
A. Tolias
BDL
144
73
0
20 Apr 2021
Revisiting Bayesian Autoencoders with MCMC
Revisiting Bayesian Autoencoders with MCMCIEEE Access (IEEE Access), 2021
Rohitash Chandra
Mahir Jain
Manavendra Maharana
P. Krivitsky
UQCVBDL
267
19
0
13 Apr 2021
Previous
123...678...151617
Next