ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 793 papers shown
Title
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive
  Learners With FlatNCE
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE
Junya Chen
Zhe Gan
Xuan Li
Qing Guo
Liqun Chen
...
Belinda Zeng
Wenlian Lu
Fan Li
Lawrence Carin
Chenyang Tao
43
28
0
02 Jul 2021
Offline-to-Online Reinforcement Learning via Balanced Replay and
  Pessimistic Q-Ensemble
Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-Ensemble
Seunghyun Lee
Younggyo Seo
Kimin Lee
Pieter Abbeel
Jinwoo Shin
OffRL
OnRL
22
182
0
01 Jul 2021
Monte Carlo Variational Auto-Encoders
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDL
DRL
27
44
0
30 Jun 2021
Continuous Latent Process Flows
Continuous Latent Process Flows
Ruizhi Deng
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
AI4TS
29
17
0
29 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image
  Generation
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation
Xiaohui Zeng
R. Urtasun
R. Zemel
Sanja Fidler
Renjie Liao
DiffM
11
2
0
25 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
A variational autoencoder approach for choice set generation and
  implicit perception of alternatives in choice modeling
A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling
Rui Yao
S. Bekhor
DRL
22
13
0
19 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
28
19
0
18 Jun 2021
Robust Out-of-Distribution Detection on Deep Probabilistic Generative
  Models
Robust Out-of-Distribution Detection on Deep Probabilistic Generative Models
Jaemoo Choi
Changyeon Yoon
Jeongwoo Bae
Myung-joo Kang
OODD
30
4
0
15 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
26
28
0
14 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
23
12
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
32
37
0
10 Jun 2021
EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
Qi Ma
S. Ghosh
19
5
0
09 Jun 2021
On Memorization in Probabilistic Deep Generative Models
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
25
59
0
06 Jun 2021
Consistency Regularization for Variational Auto-Encoders
Consistency Regularization for Variational Auto-Encoders
Samarth Sinha
Adji Bousso Dieng
CML
27
68
0
31 May 2021
An overview of deep learning techniques for epileptic seizures detection
  and prediction based on neuroimaging modalities: Methods, challenges, and
  future works
An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works
A. Shoeibi
Parisa Moridian
Marjane Khodatars
Navid Ghassemi
M. Jafari
...
Juan M Gorriz
Javier Ramírez
Abbas Khosravi
S. Nahavandi
U. Acharya
26
49
0
29 May 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
Alek Dimitriev
Mingyuan Zhou
21
12
0
28 May 2021
Generative Text Modeling through Short Run Inference
Generative Text Modeling through Short Run Inference
Bo Pang
Erik Nijkamp
Tian Han
Ying Nian Wu
SyDa
BDL
DRL
36
5
0
27 May 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives
  to Learn Generative Model and Neural Adaptive Proposal for Time Series
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time Series
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDL
AI4TS
28
2
0
20 May 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Boosting Variational Inference With Locally Adaptive Step-Sizes
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
19
2
0
19 May 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
A likelihood approach to nonparametric estimation of a singular
  distribution using deep generative models
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
34
17
0
09 May 2021
Generalized Multimodal ELBO
Generalized Multimodal ELBO
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
24
89
0
06 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
Gido M. van de Ven
Zhe Li
A. Tolias
BDL
50
58
0
20 Apr 2021
Revisiting Bayesian Autoencoders with MCMC
Revisiting Bayesian Autoencoders with MCMC
Rohitash Chandra
Mahir Jain
Manavendra Maharana
P. Krivitsky
UQCV
BDL
42
17
0
13 Apr 2021
Boltzmann Tuning of Generative Models
Boltzmann Tuning of Generative Models
Victor Berger
Michele Sebag
37
0
0
12 Apr 2021
Multimodal Fusion Refiner Networks
Multimodal Fusion Refiner Networks
Sethuraman Sankaran
David Yang
Ser-Nam Lim
OffRL
29
8
0
08 Apr 2021
Creativity and Machine Learning: A Survey
Creativity and Machine Learning: A Survey
Giorgio Franceschelli
Mirco Musolesi
VLM
AI4CE
34
40
0
06 Apr 2021
Qualitative Planning in Imperfect Information Games with Active Sensing
  and Reactive Sensor Attacks: Cost of Unawareness
Qualitative Planning in Imperfect Information Games with Active Sensing and Reactive Sensor Attacks: Cost of Unawareness
A. Kulkarni
Shuo Han
Nandi O. Leslie
Charles A. Kamhoua
Jie Fu
11
2
0
01 Apr 2021
Variational Rejection Particle Filtering
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
38
0
0
29 Mar 2021
SKID RAW: Skill Discovery from Raw Trajectories
SKID RAW: Skill Discovery from Raw Trajectories
Daniel Tanneberg
Kai Ploeger
Elmar Rueckert
Jan Peters
11
29
0
26 Mar 2021
Neighbor Embedding Variational Autoencoder
Neighbor Embedding Variational Autoencoder
Renfei Tu
Yang Liu
Yongzeng Xue
Cheng Wang
Maozu Guo
BDL
DRL
20
0
0
21 Mar 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
35
7
0
17 Mar 2021
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
DRL
26
9
0
16 Mar 2021
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Ahmed Ben Said
A. Erradi
23
35
0
12 Mar 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial
  Attacks
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
39
10
0
10 Mar 2021
A prior-based approximate latent Riemannian metric
A prior-based approximate latent Riemannian metric
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
17
11
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Sahra Ghalebikesabi
R. Cornish
Luke J. Kelly
Chris Holmes
23
5
0
05 Mar 2021
A practical tutorial on Variational Bayes
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
34
38
0
01 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
19
51
0
01 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
17
14
0
01 Mar 2021
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric
  Divergence Over Simulations
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations
Justin Domke
4
9
0
25 Feb 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Product-form estimators: exploiting independence to scale up Monte Carlo
Juan Kuntz
F. R. Crucinio
A. M. Johansen
36
10
0
23 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
11
25
0
22 Feb 2021
Kanerva++: extending The Kanerva Machine with differentiable, locally
  block allocated latent memory
Kanerva++: extending The Kanerva Machine with differentiable, locally block allocated latent memory
Jason Ramapuram
Yan Wu
Alexandros Kalousis
12
4
0
20 Feb 2021
Linear Classifiers in Product Space Forms
Linear Classifiers in Product Space Forms
Puoya Tabaghi
Chao Pan
Eli Chien
Jianhao Peng
Olgica Milenković
32
9
0
19 Feb 2021
Previous
123...678...141516
Next