ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 816 papers shown
Revisiting Bayesian Autoencoders with MCMC
Revisiting Bayesian Autoencoders with MCMCIEEE Access (IEEE Access), 2021
Rohitash Chandra
Mahir Jain
Manavendra Maharana
P. Krivitsky
UQCVBDL
292
19
0
13 Apr 2021
Boltzmann Tuning of Generative Models
Boltzmann Tuning of Generative Models
Victor Berger
Michele Sebag
135
0
0
12 Apr 2021
Multimodal Fusion Refiner Networks
Multimodal Fusion Refiner Networks
Sethuraman Sankaran
David Yang
Ser-Nam Lim
OffRL
169
8
0
08 Apr 2021
Creativity and Machine Learning: A Survey
Creativity and Machine Learning: A SurveyACM Computing Surveys (CSUR), 2021
Giorgio Franceschelli
Mirco Musolesi
VLMAI4CE
534
55
0
06 Apr 2021
Qualitative Planning in Imperfect Information Games with Active Sensing
  and Reactive Sensor Attacks: Cost of Unawareness
Qualitative Planning in Imperfect Information Games with Active Sensing and Reactive Sensor Attacks: Cost of UnawarenessIEEE Conference on Decision and Control (CDC), 2021
A. Kulkarni
Shuo Han
Nandi O. Leslie
Charles A. Kamhoua
Jie Fu
281
2
0
01 Apr 2021
Variational Rejection Particle Filtering
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
175
0
0
29 Mar 2021
SKID RAW: Skill Discovery from Raw Trajectories
SKID RAW: Skill Discovery from Raw TrajectoriesIEEE Robotics and Automation Letters (RA-L), 2021
Daniel Tanneberg
Kai Ploeger
Elmar Rueckert
Jan Peters
204
33
0
26 Mar 2021
Neighbor Embedding Variational Autoencoder
Neighbor Embedding Variational Autoencoder
Renfei Tu
Yang Liu
Yongzeng Xue
Cheng Wang
Maozu Guo
BDLDRL
127
0
0
21 Mar 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
267
7
0
17 Mar 2021
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling
Spatial Dependency Networks: Neural Layers for Improved Generative Image ModelingInternational Conference on Learning Representations (ICLR), 2021
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
DRL
155
9
0
16 Mar 2021
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Ahmed Ben Said
A. Erradi
103
45
0
12 Mar 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial
  Attacks
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAMLDRL
176
11
0
10 Mar 2021
A prior-based approximate latent Riemannian metric
A prior-based approximate latent Riemannian metricInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
146
14
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
721
627
0
08 Mar 2021
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Sahra Ghalebikesabi
R. Cornish
Luke J. Kelly
Chris Holmes
127
5
0
05 Mar 2021
A practical tutorial on Variational Bayes
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
190
49
0
01 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspectiveSN Computer Science (SN Comput. Sci.), 2021
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
187
68
0
01 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference CombinatorsConference on Uncertainty in Artificial Intelligence (UAI), 2021
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
287
18
0
01 Mar 2021
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric
  Divergence Over Simulations
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations
Justin Domke
98
11
0
25 Feb 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Product-form estimators: exploiting independence to scale up Monte CarloStatistics and computing (Stat Comput), 2021
Juan Kuntz
F. R. Crucinio
A. M. Johansen
379
11
0
23 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back CodingInternational Conference on Machine Learning (ICML), 2021
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
238
25
0
22 Feb 2021
Kanerva++: extending The Kanerva Machine with differentiable, locally
  block allocated latent memory
Kanerva++: extending The Kanerva Machine with differentiable, locally block allocated latent memoryInternational Conference on Learning Representations (ICLR), 2021
Jason Ramapuram
Yan Wu
Alexandros Kalousis
203
4
0
20 Feb 2021
Linear Classifiers in Product Space Forms
Linear Classifiers in Product Space Forms
Puoya Tabaghi
Chao Pan
Eli Chien
Jianhao Peng
S. Rasoul Etesami
210
9
0
19 Feb 2021
VAE Approximation Error: ELBO and Exponential Families
VAE Approximation Error: ELBO and Exponential FamiliesInternational Conference on Learning Representations (ICLR), 2021
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
185
18
0
18 Feb 2021
Preventing Oversmoothing in VAE via Generalized Variance
  Parameterization
Preventing Oversmoothing in VAE via Generalized Variance ParameterizationNeurocomputing (Neurocomputing), 2021
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
217
18
0
17 Feb 2021
Hierarchical VAEs Know What They Don't Know
Hierarchical VAEs Know What They Don't KnowInternational Conference on Machine Learning (ICML), 2021
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
615
83
0
16 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal TransportInternational Conference on Machine Learning (ICML), 2021
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
230
87
0
15 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical DistributionsNeural Information Processing Systems (NeurIPS), 2021
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
636
560
0
10 Feb 2021
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
  Random Function Approach
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian Random Function Approach
Minyoung Kim
Vladimir Pavlovic
BDL
230
6
0
05 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structuresInternational Conference on Learning Representations (ICLR), 2021
Zichao Yan
William L. Hamilton
Mathieu Blanchette
113
3
0
01 Feb 2021
Learning Interpretable Deep State Space Model for Probabilistic Time
  Series Forecasting
Learning Interpretable Deep State Space Model for Probabilistic Time Series ForecastingInternational Joint Conference on Artificial Intelligence (IJCAI), 2019
Longyuan Li
Junchi Yan
Xiaokang Yang
Yaohui Jin
OODBDLAI4TS
173
69
0
31 Jan 2021
Estimating the Unique Information of Continuous Variables
Estimating the Unique Information of Continuous VariablesNeural Information Processing Systems (NeurIPS), 2021
Ari Pakman
Amin Nejatbakhsh
D. Gilboa
Abdullah Makkeh
Luca Mazzucato
Michael Wibral
E. Schneidman
543
32
0
30 Jan 2021
Generalized Doubly Reparameterized Gradient Estimators
Generalized Doubly Reparameterized Gradient EstimatorsInternational Conference on Machine Learning (ICML), 2021
Matthias Bauer
A. Mnih
BDL
119
15
0
26 Jan 2021
Unsupervised Imputation of Non-ignorably Missing Data Using
  Importance-Weighted Autoencoders
Unsupervised Imputation of Non-ignorably Missing Data Using Importance-Weighted AutoencodersStatistics in Biopharmaceutical Research (SBR), 2021
David K. Lim
N. Rashid
Junier B. Oliva
J. Ibrahim
138
5
0
18 Jan 2021
Multimodal Variational Autoencoders for Semi-Supervised Learning: In
  Defense of Product-of-Experts
Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts
S. Kutuzova
Oswin Krause
D. McCloskey
Mads Nielsen
Christian Igel
232
18
0
18 Jan 2021
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable ModelsInternational Conference on Learning Representations (ICLR), 2021
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
256
17
0
18 Jan 2021
Cauchy-Schwarz Regularized Autoencoder
Cauchy-Schwarz Regularized AutoencoderJournal of machine learning research (JMLR), 2021
Linh-Tam Tran
Maja Pantic
M. Deisenroth
DRLBDL
230
19
0
06 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
1.2K
62
0
27 Dec 2020
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
180
1
0
24 Dec 2020
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative ModelsPattern Recognition (Pattern Recognit.), 2020
I. Peis
Pablo M. Olmos
Antonio Artés-Rodríguez
BDLDRL
215
11
0
15 Dec 2020
Recursive Tree Grammar Autoencoders
Recursive Tree Grammar AutoencodersMachine-mediated learning (ML), 2020
Benjamin Paassen
I. Koprinska
K. Yacef
139
11
0
03 Dec 2020
Mutual Information Constraints for Monte-Carlo Objectives
Mutual Information Constraints for Monte-Carlo ObjectivesJournal of machine learning research (JMLR), 2020
Gábor Melis
András Gyorgy
Phil Blunsom
221
1
0
01 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing
  Flows
Improved Variational Bayesian Phylogenetic Inference with Normalizing FlowsNeural Information Processing Systems (NeurIPS), 2020
Cheng Zhang
BDL
156
30
0
01 Dec 2020
Recursive Inference for Variational Autoencoders
Recursive Inference for Variational AutoencodersNeural Information Processing Systems (NeurIPS), 2020
Minyoung Kim
Vladimir Pavlovic
DRL
189
14
0
17 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
221
33
0
11 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian ProcessesInternational Conference on Machine Learning (ICML), 2020
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
154
4
0
01 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational ObjectiveNeural Information Processing Systems (NeurIPS), 2020
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
250
5
0
29 Oct 2020
Generative Neurosymbolic Machines
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDLOCL
579
71
0
23 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
181
17
0
22 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
423
18
0
19 Oct 2020
Previous
123...789...151617
Next