Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.00519
Cited By
Importance Weighted Autoencoders
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Importance Weighted Autoencoders"
50 / 794 papers shown
Title
Bootstrapping Neural Processes
Juho Lee
Yoonho Lee
Jungtaek Kim
Eunho Yang
Sung Ju Hwang
Yee Whye Teh
UQCV
BDL
26
42
0
07 Aug 2020
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Valentin Liévin
Andrea Dittadi
Anders Christensen
Ole Winther
DRL
30
6
0
05 Aug 2020
SeismoFlow -- Data augmentation for the class imbalance problem
R. Milidiú
Luis Müller
AI4TS
17
1
0
23 Jul 2020
Multi-Sample Online Learning for Probabilistic Spiking Neural Networks
Hyeryung Jang
Osvaldo Simeone
18
0
0
23 Jul 2020
Measurement error models: from nonparametric methods to deep neural networks
Zhirui Hu
Z. Ke
Jun S. Liu
9
4
0
15 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
32
25
0
14 Jul 2020
Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
10
3
0
14 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
Self-Reflective Variational Autoencoder
Ifigeneia Apostolopoulou
Elan Rosenfeld
A. Dubrawski
OOD
BDL
DRL
19
0
0
10 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
35
895
0
08 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
31
53
0
07 Jul 2020
Learning to learn generative programs with Memoised Wake-Sleep
Luke B. Hewitt
T. Le
J. Tenenbaum
CLL
22
26
0
06 Jul 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPM
BDL
DRL
23
88
0
06 Jul 2020
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
30
22
0
03 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard Turner
BDL
14
77
0
02 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
22
16
0
01 Jul 2020
Semi-supervised Sequential Generative Models
Michael Teng
T. Le
Adam Scibior
Frank Wood
BDL
AI4TS
27
3
0
30 Jun 2020
Learning Sparse Prototypes for Text Generation
Junxian He
Taylor Berg-Kirkpatrick
Graham Neubig
27
23
0
29 Jun 2020
Lattice Representation Learning
Luis A. Lastras
22
1
0
24 Jun 2020
Learning Disentangled Representations of Video with Missing Data
Armand Comas Massague
Chi Zhang
Z. Feric
Mario Sznaier
Rose Yu
DRL
25
16
0
23 Jun 2020
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
Niels Bruun Ipsen
Pierre-Alexandre Mattei
J. Frellsen
DRL
14
54
0
23 Jun 2020
Embodied Self-supervised Learning by Coordinated Sampling and Training
Yifan Sun
Xihong Wu
SSL
14
7
0
20 Jun 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
16
32
0
18 Jun 2020
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
34
42
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
A Tutorial on VAEs: From Bayes' Rule to Lossless Compression
Ronald Yu
BDL
21
23
0
18 Jun 2020
Analytical Probability Distributions and EM-Learning for Deep Generative Networks
Randall Balestriero
Sébastien Paris
Richard G. Baraniuk
UQCV
DRL
9
1
0
17 Jun 2020
Density Deconvolution with Normalizing Flows
Tim Dockhorn
James A. Ritchie
Yaoliang Yu
Iain Murray
DRL
18
5
0
16 Jun 2020
Isometric Autoencoders
Amos Gropp
Matan Atzmon
Y. Lipman
DRL
21
18
0
16 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
24
84
0
16 Jun 2020
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
39
67
0
15 Jun 2020
Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning
Yunhao Tang
A. Kucukelbir
OffRL
27
16
0
13 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
Improving GAN Training with Probability Ratio Clipping and Sample Reweighting
Yue Wu
Pan Zhou
A. Wilson
Eric Xing
Zhiting Hu
GAN
31
33
0
12 Jun 2020
Cumulant GAN
Yannis Pantazis
D. Paul
M. Fasoulakis
Y. Stylianou
Markos A. Katsoulakis
GAN
16
18
0
11 Jun 2020
A Generalised Linear Model Framework for
β
β
β
-Variational Autoencoders based on Exponential Dispersion Families
Robert Sicks
R. Korn
Stefanie Schwaar
21
12
0
11 Jun 2020
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
VAEs in the Presence of Missing Data
Mark Collier
A. Nazábal
Christopher K. I. Williams
DRL
20
29
0
09 Jun 2020
Super-resolution Variational Auto-Encoders
Ioannis Gatopoulos
M. Stol
Jakub M. Tomczak
SupR
DiffM
25
15
0
09 Jun 2020
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
Jae Hyun Lim
Aaron Courville
C. Pal
Chin-Wei Huang
DRL
8
23
0
09 Jun 2020
MHVAE: a Human-Inspired Deep Hierarchical Generative Model for Multimodal Representation Learning
Miguel Vasco
Francisco S. Melo
Ana Paiva
DRL
6
11
0
04 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
34
8
0
28 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
42
61
0
27 Apr 2020
VOWEL: A Local Online Learning Rule for Recurrent Networks of Probabilistic Spiking Winner-Take-All Circuits
Hyeryung Jang
N. Skatchkovsky
Osvaldo Simeone
32
11
0
20 Apr 2020
Do sequence-to-sequence VAEs learn global features of sentences?
Tom Bosc
Pascal Vincent
SSL
23
9
0
16 Apr 2020
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
Sajad Norouzi
David J. Fleet
Mohammad Norouzi
VLM
DRL
16
3
0
09 Apr 2020
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li
Xiang Gao
Yuan Li
Baolin Peng
Xiujun Li
Yizhe Zhang
Jianfeng Gao
SSL
DRL
32
181
0
05 Apr 2020
Epitomic Variational Graph Autoencoder
R. A. Khan
Muhammad Umer Anwaar
M. Kleinsteuber
BDL
35
10
0
03 Apr 2020
SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo
Alex Beatson
Mohammad Norouzi
Jun Zhu
David Duvenaud
Ryan P. Adams
Ricky T. Q. Chen
11
29
0
01 Apr 2020
MCFlow: Monte Carlo Flow Models for Data Imputation
Trevor W. Richardson
Wencheng Wu
Lei Lin
Beilei Xu
Edgar A. Bernal
OOD
14
45
0
27 Mar 2020
Previous
1
2
3
...
8
9
10
...
14
15
16
Next