ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.03243
  4. Cited By
Black-box $α$-divergence Minimization
v1v2v3 (latest)

Black-box ααα-divergence Minimization

10 November 2015
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
ArXiv (abs)PDFHTML

Papers citing "Black-box $α$-divergence Minimization"

50 / 71 papers shown
Title
Trusted Fake Audio Detection Based on Dirichlet Distribution
Trusted Fake Audio Detection Based on Dirichlet Distribution
Chi Ding
Junxiao Xue
Cong Wang
Hao Zhou
138
0
0
03 Jun 2025
Stability-based Generalization Bounds for Variational Inference
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
Roni Khardon
BDL
192
0
0
17 Feb 2025
Alpha Entropy Search for New Information-based Bayesian Optimization
Alpha Entropy Search for New Information-based Bayesian OptimizationKnowledge-Based Systems (KBS), 2024
Daniel Fernández-Sánchez
Eduardo C. Garrido-Merchán
Daniel Hernández-Lobato
244
2
0
25 Nov 2024
Bayesian neural networks for predicting uncertainty in full-field
  material response
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
188
12
0
21 Jun 2024
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon
  Divergence Between Initial and Target Distribution
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution
Johannes Zenn
Kushagra Pandey
148
0
0
23 May 2024
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Lingdong Kong
Xiang Xu
Jun Cen
Wenwei Zhang
Liang Pan
Kai-xiang Chen
Ziwei Liu
260
12
0
25 Mar 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
457
6
0
20 Mar 2024
Forward $χ^2$ Divergence Based Variational Importance Sampling
Forward χ2χ^2χ2 Divergence Based Variational Importance SamplingInternational Conference on Learning Representations (ICLR), 2023
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
156
2
0
04 Nov 2023
Adaptive importance sampling for heavy-tailed distributions via
  $α$-divergence minimization
Adaptive importance sampling for heavy-tailed distributions via ααα-divergence minimizationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Thomas Guilmeau
Nicola Branchini
Émilie Chouzenoux
Victor Elvira
180
3
0
25 Oct 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measuresStatistics and computing (Stat. Comput.), 2023
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDLDRL
130
2
0
26 Aug 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo DiffusionsInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffMOT
685
12
0
03 Jul 2023
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Parameter Estimation in DAGs from Incomplete Data via Optimal TransportInternational Conference on Machine Learning (ICML), 2023
Vy Vo
Trung Le
L. Vuong
He Zhao
Edwin V. Bonilla
Dinh Q. Phung
OT
226
4
0
25 May 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational InferenceNeural Information Processing Systems (NeurIPS), 2023
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
292
20
0
24 May 2023
Nonlinear Kalman Filtering with Reparametrization Gradients
Nonlinear Kalman Filtering with Reparametrization GradientsInternational Conference Frontiers Signal Processing (ICFSP), 2023
San Gultekin
B. Kitts
A. Flores
John Paisley
84
1
0
08 Mar 2023
Variational Bayesian Neural Networks via Resolution of Singularities
Variational Bayesian Neural Networks via Resolution of SingularitiesJournal of Computational And Graphical Statistics (JCGS), 2023
Susan Wei
Edmund Lau
BDL
186
2
0
13 Feb 2023
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
304
4
0
09 Nov 2022
GFlowNets and variational inference
GFlowNets and variational inferenceInternational Conference on Learning Representations (ICLR), 2022
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
390
102
0
02 Oct 2022
Correcting Model Bias with Sparse Implicit Processes
Correcting Model Bias with Sparse Implicit Processes
Simón Rodríguez Santana
Luis A. Ortega Andrés
Daniel Hernández-Lobato
B. Zaldívar
BDL
103
1
0
21 Jul 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep LearningInternational Conference on Machine Learning (ICML), 2022
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCVBDL
220
33
0
17 Jun 2022
Deep Variational Implicit Processes
Deep Variational Implicit ProcessesInternational Conference on Learning Representations (ICLR), 2022
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
183
6
0
14 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian GradientsNeural Information Processing Systems (NeurIPS), 2022
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
288
8
0
13 Jun 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error:
  An Enhanced Bayesian Upper Confidence Bound Framework
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound FrameworkNeural Information Processing Systems (NeurIPS), 2022
Ziyi Huang
Henry Lam
A. Meisami
Haofeng Zhang
302
4
0
31 Jan 2022
Confidence May Cheat: Self-Training on Graph Neural Networks under
  Distribution Shift
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution ShiftThe Web Conference (WWW), 2022
Hongrui Liu
Binbin Hu
Xiao Wang
Chuan Shi
Qing Cui
Jun Zhou
256
62
0
27 Jan 2022
Variational Inference with Holder Bounds
Variational Inference with Holder Bounds
Junya Chen
Danni Lu
Zidi Xiu
Ke Bai
Lawrence Carin
Chenyang Tao
107
7
0
04 Nov 2021
Function-space Inference with Sparse Implicit Processes
Function-space Inference with Sparse Implicit Processes
Simón Rodríguez Santana
B. Zaldívar
Daniel Hernández-Lobato
141
13
0
14 Oct 2021
Challenges and Opportunities in High-dimensional Variational Inference
Challenges and Opportunities in High-dimensional Variational InferenceNeural Information Processing Systems (NeurIPS), 2021
Akash Kumar Dhaka
Alejandro Catalina
Manushi K. V. Welandawe
Michael Riis Andersen
Jonathan H. Huggins
Aki Vehtari
157
47
0
01 Mar 2021
On the Difficulty of Unbiased Alpha Divergence Minimization
On the Difficulty of Unbiased Alpha Divergence MinimizationInternational Conference on Machine Learning (ICML), 2020
Tomas Geffner
Justin Domke
283
18
0
19 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCVBDL
261
33
0
06 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
255
29
0
02 Oct 2020
Task Agnostic Continual Learning Using Online Variational Bayes with
  Fixed-Point Updates
Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point UpdatesNeural Computation (Neural Comput.), 2020
Chen Zeno
Itay Golan
Elad Hoffer
Daniel Soudry
OODFedML
201
49
0
01 Oct 2020
Bridging Maximum Likelihood and Adversarial Learning via
  $α$-Divergence
Bridging Maximum Likelihood and Adversarial Learning via ααα-DivergenceAAAI Conference on Artificial Intelligence (AAAI), 2020
Miaoyun Zhao
Yulai Cong
Shuyang Dai
Lawrence Carin
GAN
100
10
0
13 Jul 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
256
18
0
28 Jun 2020
Infinite-dimensional gradient-based descent for alpha-divergence
  minimisation
Infinite-dimensional gradient-based descent for alpha-divergence minimisation
Kamélia Daudel
Randal Douc
Franccois Portier
218
18
0
20 May 2020
Scalable Approximate Inference and Some Applications
Scalable Approximate Inference and Some Applications
Jun Han
BDL
143
1
0
07 Mar 2020
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Quantile Propagation for Wasserstein-Approximate Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2019
Rui Zhang
Christian J. Walder
Edwin V. Bonilla
Marian-Andrei Rizoiu
Lexing Xie
180
2
0
21 Dec 2019
Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically
  Feasible Bayesian Recurrent Neural Network
Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically Feasible Bayesian Recurrent Neural NetworkIEEE International Conference on Robotics and Automation (ICRA), 2019
Chen Tang
Jianyu Chen
Masayoshi Tomizuka
90
17
0
11 Nov 2019
Parametric Gaussian Process Regressors
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
200
6
0
16 Oct 2019
Validated Variational Inference via Practical Posterior Error Bounds
Validated Variational Inference via Practical Posterior Error BoundsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
308
41
0
09 Oct 2019
The fff-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
207
1
0
26 Sep 2019
Adversarial $α$-divergence Minimization for Bayesian Approximate
  Inference
Adversarial ααα-divergence Minimization for Bayesian Approximate Inference
Simón Rodríguez Santana
Daniel Hernández-Lobato
UQCVBDL
142
8
0
13 Sep 2019
On the Expressiveness of Approximate Inference in Bayesian Neural
  Networks
On the Expressiveness of Approximate Inference in Bayesian Neural Networks
Andrew Y. K. Foong
David R. Burt
Yingzhen Li
Richard Turner
UQCVBDL
171
20
0
02 Sep 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
356
114
0
03 Apr 2019
Correlated Parameters to Accurately Measure Uncertainty in Deep Neural
  Networks
Correlated Parameters to Accurately Measure Uncertainty in Deep Neural Networks
K. Posch
J. Pilz
UQCVBDL
165
30
0
02 Apr 2019
Uncertainty-Based Out-of-Distribution Detection in Deep Reinforcement
  Learning
Uncertainty-Based Out-of-Distribution Detection in Deep Reinforcement Learning
Andreas Sedlmeier
Thomas Gabor
Thomy Phan
Lenz Belzner
Claudia Linnhoff-Popien
UQCV
156
27
0
08 Jan 2019
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
185
57
0
27 Nov 2018
Model-Based Reinforcement Learning for Sepsis Treatment
Model-Based Reinforcement Learning for Sepsis Treatment
Aniruddh Raghu
Matthieu Komorowski
Sumeetpal S. Singh
OffRLLM&MA
99
55
0
23 Nov 2018
Projected BNNs: Avoiding weight-space pathologies by learning latent
  representations of neural network weights
Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights
Melanie F. Pradier
Weiwei Pan
Jiayu Yao
S. Ghosh
Finale Doshi-velez
UQCVBDL
189
10
0
16 Nov 2018
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation
  Methods
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation Methods
Caroline Werther
M. Ferguson
K. Park
Cuixian Chen
Stephen J. Roberts
ODL
142
4
0
08 Nov 2018
Tuning Fairness by Balancing Target Labels
Tuning Fairness by Balancing Target Labels
T. Kehrenberg
Zexun Chen
Novi Quadrianto
267
4
0
12 Oct 2018
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDLUQCV
135
81
0
13 Jun 2018
12
Next