ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06279
  4. Cited By
Neural Programmer-Interpreters

Neural Programmer-Interpreters

19 November 2015
Scott E. Reed
Nando de Freitas
ArXivPDFHTML

Papers citing "Neural Programmer-Interpreters"

30 / 80 papers shown
Title
Towards Neural Theorem Proving at Scale
Towards Neural Theorem Proving at Scale
Pasquale Minervini
Matko Bosnjak
Tim Rocktaschel
Sebastian Riedel
LRM
NAI
21
38
0
21 Jul 2018
NEUZZ: Efficient Fuzzing with Neural Program Smoothing
NEUZZ: Efficient Fuzzing with Neural Program Smoothing
Dongdong She
Kexin Pei
Dave Epstein
Junfeng Yang
Baishakhi Ray
Suman Jana
23
185
0
15 Jul 2018
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
26
68
0
12 Jul 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
97
3,078
0
04 Jun 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of
  Objects and their Interactions
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDL
OCL
DRL
34
290
0
28 Feb 2018
A Semantic Loss Function for Deep Learning with Symbolic Knowledge
A Semantic Loss Function for Deep Learning with Symbolic Knowledge
Jingyi Xu
Zilu Zhang
Tal Friedman
Yitao Liang
Guy Van den Broeck
38
445
0
29 Nov 2017
Modeling Past and Future for Neural Machine Translation
Modeling Past and Future for Neural Machine Translation
Zaixiang Zheng
Hao Zhou
Shujian Huang
Lili Mou
Xinyu Dai
Jiajun Chen
Zhaopeng Tu
27
48
0
27 Nov 2017
Dynamic Neural Program Embedding for Program Repair
Dynamic Neural Program Embedding for Program Repair
Ke Wang
Rishabh Singh
Z. Su
NAI
23
136
0
20 Nov 2017
Learning Explanatory Rules from Noisy Data
Learning Explanatory Rules from Noisy Data
Richard Evans
Edward Grefenstette
50
478
0
13 Nov 2017
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
Neural Task Programming: Learning to Generalize Across Hierarchical
  Tasks
Neural Task Programming: Learning to Generalize Across Hierarchical Tasks
Danfei Xu
Suraj Nair
Yuke Zhu
J. Gao
Animesh Garg
Li Fei-Fei
Silvio Savarese
14
193
0
04 Oct 2017
Using Program Induction to Interpret Transition System Dynamics
Using Program Induction to Interpret Transition System Dynamics
Svetlin Penkov
S. Ramamoorthy
AI4CE
25
11
0
26 Jul 2017
Towards Synthesizing Complex Programs from Input-Output Examples
Towards Synthesizing Complex Programs from Input-Output Examples
Xinyun Chen
Chang-rui Liu
D. Song
NAI
15
11
0
05 Jun 2017
On-the-fly Operation Batching in Dynamic Computation Graphs
On-the-fly Operation Batching in Dynamic Computation Graphs
Graham Neubig
Yoav Goldberg
Chris Dyer
34
60
0
22 May 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank D. Wood
SyDa
OOD
25
89
0
02 Mar 2017
Improving the Neural GPU Architecture for Algorithm Learning
Improving the Neural GPU Architecture for Algorithm Learning
Kārlis Freivalds
Renars Liepins
20
43
0
28 Feb 2017
An Introduction to Deep Learning for the Physical Layer
An Introduction to Deep Learning for the Physical Layer
Tim O'Shea
J. Hoydis
AI4CE
89
2,171
0
02 Feb 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,502
0
25 Jan 2017
Coupling Distributed and Symbolic Execution for Natural Language Queries
Coupling Distributed and Symbolic Execution for Natural Language Queries
Lili Mou
Zhengdong Lu
Hang Li
Zhi Jin
NAI
FedML
33
43
0
08 Dec 2016
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Divide and Conquer Networks
Divide and Conquer Networks
Alex W. Nowak
David Folqué
Joan Bruna
32
20
0
08 Nov 2016
Learning Continuous Semantic Representations of Symbolic Expressions
Learning Continuous Semantic Representations of Symbolic Expressions
Miltiadis Allamanis
Pankajan Chanthirasegaran
Pushmeet Kohli
Charles Sutton
CLL
NAI
31
99
0
04 Nov 2016
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with
  Weak Supervision
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
Chen Liang
Jonathan Berant
Quoc V. Le
Kenneth D. Forbus
Ni Lao
NAI
44
404
0
31 Oct 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank D. Wood
UQCV
41
142
0
31 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
24
81
0
18 Oct 2016
An Experimental Study of LSTM Encoder-Decoder Model for Text
  Simplification
An Experimental Study of LSTM Encoder-Decoder Model for Text Simplification
Tong Wang
Ping Chen
K. Amaral
Jipeng Qiang
11
46
0
13 Sep 2016
TerpreT: A Probabilistic Programming Language for Program Induction
TerpreT: A Probabilistic Programming Language for Program Induction
Alexander L. Gaunt
Marc Brockschmidt
Rishabh Singh
Nate Kushman
Pushmeet Kohli
Jonathan Taylor
Daniel Tarlow
30
123
0
15 Aug 2016
Programming with a Differentiable Forth Interpreter
Programming with a Differentiable Forth Interpreter
Matko Bosnjak
Tim Rocktaschel
Jason Naradowsky
Sebastian Riedel
17
148
0
21 May 2016
Disentangled Representations in Neural Models
Disentangled Representations in Neural Models
William F. Whitney
OOD
OCL
DRL
24
18
0
07 Feb 2016
Neural Programmer: Inducing Latent Programs with Gradient Descent
Neural Programmer: Inducing Latent Programs with Gradient Descent
Arvind Neelakantan
Quoc V. Le
Ilya Sutskever
ODL
27
260
0
16 Nov 2015
Previous
12