ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06727
  4. Cited By
Scalable Gradient-Based Tuning of Continuous Regularization
  Hyperparameters

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

20 November 2015
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
ArXivPDFHTML

Papers citing "Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters"

38 / 38 papers shown
Title
Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
Jinghan Li
Zhicheng Sun
Fei Li
102
1
0
02 Oct 2024
Cognitive Evolutionary Learning to Select Feature Interactions for
  Recommender Systems
Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems
Runlong Yu
Qixiang Shao
Qi Liu
Huan Liu
Enhong Chen
36
0
0
29 May 2024
Backpropagation Path Search On Adversarial Transferability
Backpropagation Path Search On Adversarial Transferability
Zhuoer Xu
Zhangxuan Gu
Jianping Zhang
Shiwen Cui
Changhua Meng
Weiqiang Wang
AAML
35
5
0
15 Aug 2023
Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
  Continuous-Time Liquid Neural Networks
Digital Twins for Patient Care via Knowledge Graphs and Closed-Form Continuous-Time Liquid Neural Networks
Logan Nye
AI4CE
21
5
0
08 Jul 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With
  Equilibrium Constraints
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
42
10
0
01 Dec 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Di Wang
Jinhui Xu
32
0
0
03 Oct 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
86
35
0
24 Jul 2022
Optimizing Training Trajectories in Variational Autoencoders via Latent
  Bayesian Optimization Approach
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
Arpan Biswas
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
DRL
19
10
0
30 Jun 2022
Learning the Effect of Registration Hyperparameters with HyperMorph
Learning the Effect of Registration Hyperparameters with HyperMorph
Andrew Hoopes
Malte Hoffmann
Douglas N. Greve
Bruce Fischl
John Guttag
Adrian V. Dalca
28
38
0
30 Mar 2022
Adaptive Gradient Methods with Local Guarantees
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
24
9
0
02 Mar 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Automatic Mixed-Precision Quantization Search of BERT
Automatic Mixed-Precision Quantization Search of BERT
Changsheng Zhao
Ting Hua
Yilin Shen
Qian Lou
Hongxia Jin
MQ
17
19
0
30 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
61
69
0
09 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
15
2
0
06 Oct 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
43
21
0
17 Jun 2021
Graph Contrastive Learning Automated
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
53
222
0
27 Jan 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian V. Dalca
34
128
0
04 Jan 2021
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical
  Guarantee
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee
Junyi Li
Bin Gu
Heng-Chiao Huang
16
41
0
01 Sep 2020
Network Architecture Search for Domain Adaptation
Network Architecture Search for Domain Adaptation
Yichen Li
Xingchao Peng
OOD
21
15
0
13 Aug 2020
Not All Unlabeled Data are Equal: Learning to Weight Data in
  Semi-supervised Learning
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Zhongzheng Ren
Raymond A. Yeh
A. Schwing
36
95
0
02 Jul 2020
Auxiliary Learning by Implicit Differentiation
Auxiliary Learning by Implicit Differentiation
Aviv Navon
Idan Achituve
Haggai Maron
Gal Chechik
Ethan Fetaya
23
59
0
22 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
38
226
0
06 Jun 2020
Probabilistic Dual Network Architecture Search on Graphs
Probabilistic Dual Network Architecture Search on Graphs
Yiren Zhao
Duo Wang
Xitong Gao
Robert D. Mullins
Pietro Lió
M. Jamnik
GNN
AI4CE
51
27
0
21 Mar 2020
Reducing The Search Space For Hyperparameter Optimization Using Group
  Sparsity
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
11
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
30
128
0
17 Apr 2019
Least Squares Auto-Tuning
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
24
261
0
25 Oct 2018
Regularization Learning Networks: Deep Learning for Tabular Datasets
Regularization Learning Networks: Deep Learning for Tabular Datasets
Ira Shavitt
E. Segal
AI4CE
18
20
0
16 May 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
25
139
0
26 Feb 2018
Hyperparameter Optimization: A Spectral Approach
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
25
118
0
02 Jun 2017
1