Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.06727
Cited By
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
20 November 2015
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters"
38 / 38 papers shown
Title
Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
Jinghan Li
Zhicheng Sun
Fei Li
102
1
0
02 Oct 2024
Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems
Runlong Yu
Qixiang Shao
Qi Liu
Huan Liu
Enhong Chen
36
0
0
29 May 2024
Backpropagation Path Search On Adversarial Transferability
Zhuoer Xu
Zhangxuan Gu
Jianping Zhang
Shiwen Cui
Changhua Meng
Weiqiang Wang
AAML
35
5
0
15 Aug 2023
Digital Twins for Patient Care via Knowledge Graphs and Closed-Form Continuous-Time Liquid Neural Networks
Logan Nye
AI4CE
21
5
0
08 Jul 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
42
10
0
01 Dec 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Di Wang
Jinhui Xu
32
0
0
03 Oct 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
86
35
0
24 Jul 2022
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
Arpan Biswas
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
DRL
19
10
0
30 Jun 2022
Learning the Effect of Registration Hyperparameters with HyperMorph
Andrew Hoopes
Malte Hoffmann
Douglas N. Greve
Bruce Fischl
John Guttag
Adrian V. Dalca
28
38
0
30 Mar 2022
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
24
9
0
02 Mar 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Automatic Mixed-Precision Quantization Search of BERT
Changsheng Zhao
Ting Hua
Yilin Shen
Qian Lou
Hongxia Jin
MQ
17
19
0
30 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
61
69
0
09 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
15
2
0
06 Oct 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
43
21
0
17 Jun 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
53
222
0
27 Jan 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian V. Dalca
34
128
0
04 Jan 2021
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee
Junyi Li
Bin Gu
Heng-Chiao Huang
16
41
0
01 Sep 2020
Network Architecture Search for Domain Adaptation
Yichen Li
Xingchao Peng
OOD
21
15
0
13 Aug 2020
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Zhongzheng Ren
Raymond A. Yeh
A. Schwing
36
95
0
02 Jul 2020
Auxiliary Learning by Implicit Differentiation
Aviv Navon
Idan Achituve
Haggai Maron
Gal Chechik
Ethan Fetaya
23
59
0
22 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
38
226
0
06 Jun 2020
Probabilistic Dual Network Architecture Search on Graphs
Yiren Zhao
Duo Wang
Xitong Gao
Robert D. Mullins
Pietro Lió
M. Jamnik
GNN
AI4CE
51
27
0
21 Mar 2020
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
11
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
30
128
0
17 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
24
261
0
25 Oct 2018
Regularization Learning Networks: Deep Learning for Tabular Datasets
Ira Shavitt
E. Segal
AI4CE
18
20
0
16 May 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
25
139
0
26 Feb 2018
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
25
118
0
02 Jun 2017
1