Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.03965
Cited By
The Power of Depth for Feedforward Neural Networks
12 December 2015
Ronen Eldan
Ohad Shamir
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Power of Depth for Feedforward Neural Networks"
50 / 367 papers shown
Title
On Architectures for Including Visual Information in Neural Language Models for Image Description
Marc Tanti
Albert Gatt
K. Camilleri
VLM
30
2
0
09 Nov 2019
Theoretical Guarantees for Model Auditing with Finite Adversaries
Mario Díaz
Peter Kairouz
Jiachun Liao
Lalitha Sankar
MLAU
AAML
34
2
0
08 Nov 2019
Lipschitz Constrained Parameter Initialization for Deep Transformers
Hongfei Xu
Qiuhui Liu
Josef van Genabith
Deyi Xiong
Jingyi Zhang
ODL
12
26
0
08 Nov 2019
ChebNet: Efficient and Stable Constructions of Deep Neural Networks with Rectified Power Units via Chebyshev Approximations
Shanshan Tang
Bo Li
Haijun Yu
19
7
0
07 Nov 2019
Toward a Better Monitoring Statistic for Profile Monitoring via Variational Autoencoders
N. Sergin
Hao Yan
DRL
9
22
0
01 Nov 2019
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
17
8
0
22 Oct 2019
Approximation capabilities of neural networks on unbounded domains
Ming-xi Wang
Yang Qu
19
19
0
21 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Dissecting Deep Neural Networks
Haakon Robinson
Adil Rasheed
Omer San
18
11
0
09 Oct 2019
Generalization Bounds for Convolutional Neural Networks
Shan Lin
Jingwei Zhang
MLT
17
34
0
03 Oct 2019
Full error analysis for the training of deep neural networks
C. Beck
Arnulf Jentzen
Benno Kuckuck
14
47
0
30 Sep 2019
Bifurcation Spiking Neural Network
Shao-Qun Zhang
Zhao-Yu Zhang
Zhi-Hua Zhou
19
8
0
18 Sep 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
Port-Hamiltonian Approach to Neural Network Training
Stefano Massaroli
Michael Poli
Federico Califano
Angela Faragasso
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
21
14
0
06 Sep 2019
On the rate of convergence of fully connected very deep neural network regression estimates
Michael Kohler
S. Langer
17
40
0
29 Aug 2019
Automated Architecture Design for Deep Neural Networks
Steven Abreu
3DV
AI4CE
12
16
0
22 Aug 2019
Fast generalization error bound of deep learning without scale invariance of activation functions
Y. Terada
Ryoma Hirose
MLT
11
6
0
25 Jul 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
30
110
0
24 Jul 2019
Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology
Nima Dehmamy
Albert-László Barabási
Rose Yu
GNN
30
132
0
11 Jul 2019
On Symmetry and Initialization for Neural Networks
Ido Nachum
Amir Yehudayoff
MLT
28
5
0
01 Jul 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
22
121
0
22 Jun 2019
Approximation power of random neural networks
Bolton Bailey
Ziwei Ji
Matus Telgarsky
Ruicheng Xian
18
6
0
18 Jun 2019
Interpretations of Deep Learning by Forests and Haar Wavelets
Changcun Huang
FAtt
11
0
0
16 Jun 2019
DeepSquare: Boosting the Learning Power of Deep Convolutional Neural Networks with Elementwise Square Operators
Sheng-Wei Chen
Xu Wang
Chao Chen
Yifan Lu
Xijin Zhang
Linfu Wen
24
2
0
12 Jun 2019
Deep Compositional Spatial Models
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
28
55
0
06 Jun 2019
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
9
541
0
06 Jun 2019
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
8
215
0
02 Jun 2019
Function approximation by deep networks
H. Mhaskar
T. Poggio
27
23
0
30 May 2019
Expression of Fractals Through Neural Network Functions
Nadav Dym
B. Sober
Ingrid Daubechies
13
14
0
27 May 2019
Tucker Decomposition Network: Expressive Power and Comparison
Ye Liu
Junjun Pan
Michael K. Ng
24
1
0
23 May 2019
Approximation spaces of deep neural networks
Rémi Gribonval
Gitta Kutyniok
M. Nielsen
Felix Voigtländer
13
124
0
03 May 2019
Stability and Generalization of Graph Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
MLT
30
153
0
03 May 2019
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
O. Gencoglu
M. Gils
E. Guldogan
Chamin Morikawa
Mehmet Süzen
M. Gruber
J. Leinonen
H. Huttunen
11
36
0
16 Apr 2019
Depth Separations in Neural Networks: What is Actually Being Separated?
Itay Safran
Ronen Eldan
Ohad Shamir
MDE
19
35
0
15 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Yifan Jiang
Tom Goldstein
ODL
24
103
0
15 Apr 2019
The coupling effect of Lipschitz regularization in deep neural networks
Nicolas P. Couellan
14
5
0
12 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
36
136
0
10 Apr 2019
Deep Clustering With Intra-class Distance Constraint for Hyperspectral Images
Jinguang Sun
Wanli Wang
Xian Wei
Li Fang
Xiaoliang Tang
Yusheng Xu
Hui Yu
W. Yao
4
19
0
01 Apr 2019
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
28
45
0
08 Mar 2019
Limiting Network Size within Finite Bounds for Optimization
Linu Pinto
Sasi Gopalan
19
2
0
07 Mar 2019
Universal approximations of permutation invariant/equivariant functions by deep neural networks
Akiyoshi Sannai
Yuuki Takai
Matthieu Cordonnier
29
67
0
05 Mar 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
15
99
0
05 Mar 2019
A lattice-based approach to the expressivity of deep ReLU neural networks
V. Corlay
J. Boutros
P. Ciblat
L. Brunel
13
4
0
28 Feb 2019
Efficient Deep Learning of GMMs
S. Jalali
C. Nuzman
I. Saniee
VLM
20
4
0
15 Feb 2019
A simple and efficient architecture for trainable activation functions
Andrea Apicella
Francesco Isgrò
R. Prevete
6
36
0
08 Feb 2019
On the CVP for the root lattices via folding with deep ReLU neural networks
V. Corlay
J. Boutros
P. Ciblat
L. Brunel
12
2
0
06 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
20
140
0
06 Feb 2019
Optimal Nonparametric Inference via Deep Neural Network
Ruiqi Liu
B. Boukai
Zuofeng Shang
18
18
0
05 Feb 2019
Complexity of Linear Regions in Deep Networks
Boris Hanin
David Rolnick
4
224
0
25 Jan 2019
Previous
1
2
3
4
5
6
7
8
Next