ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02867
  4. Cited By
Value Iteration Networks

Value Iteration Networks

9 February 2016
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
ArXivPDFHTML

Papers citing "Value Iteration Networks"

47 / 97 papers shown
Title
Model-Augmented Actor-Critic: Backpropagating through Paths
Model-Augmented Actor-Critic: Backpropagating through Paths
I. Clavera
Yao Fu
Pieter Abbeel
33
86
0
16 May 2020
Plan2Vec: Unsupervised Representation Learning by Latent Plans
Plan2Vec: Unsupervised Representation Learning by Latent Plans
Ge Yang
Amy Zhang
Ari S. Morcos
Joelle Pineau
Pieter Abbeel
Roberto Calandra
SSL
OffRL
21
27
0
07 May 2020
Transferable Task Execution from Pixels through Deep Planning Domain
  Learning
Transferable Task Execution from Pixels through Deep Planning Domain Learning
Kei Kase
Chris Paxton
H. Mazhar
T. Ogata
D. Fox
147
45
0
08 Mar 2020
Learning Functionally Decomposed Hierarchies for Continuous Control
  Tasks with Path Planning
Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
Sammy Christen
Lukás Jendele
Emre Aksan
Otmar Hilliges
OffRL
17
25
0
14 Feb 2020
Learning Your Way Without Map or Compass: Panoramic Target Driven Visual
  Navigation
Learning Your Way Without Map or Compass: Panoramic Target Driven Visual Navigation
David Watkins-Valls
Jingxi Xu
Nicholas R. Waytowich
Peter K. Allen
SSL
25
15
0
20 Sep 2019
Off-road Autonomous Vehicles Traversability Analysis and Trajectory
  Planning Based on Deep Inverse Reinforcement Learning
Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning
Zeyu Zhu
Nan Li
Ruoyu Sun
Huijing Zhao
Donghao Xu
14
32
0
16 Sep 2019
Motion Planning Networks: Bridging the Gap Between Learning-based and
  Classical Motion Planners
Motion Planning Networks: Bridging the Gap Between Learning-based and Classical Motion Planners
A. H. Qureshi
Yinglong Miao
Anthony Simeonov
Michael C. Yip
PINN
3DV
25
212
0
13 Jul 2019
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
G. Konidaris
24
355
0
06 Jul 2019
Growing Action Spaces
Growing Action Spaces
Gregory Farquhar
Laura Gustafson
Zeming Lin
Shimon Whiteson
Nicolas Usunier
Gabriel Synnaeve
11
37
0
28 Jun 2019
NeoNav: Improving the Generalization of Visual Navigation via Generating
  Next Expected Observations
NeoNav: Improving the Generalization of Visual Navigation via Generating Next Expected Observations
Qiaoyun Wu
Dinesh Manocha
Jun Wang
Kai Xu
10
15
0
17 Jun 2019
Deep Reinforcement Learning for Cyber Security
Deep Reinforcement Learning for Cyber Security
Thanh Thi Nguyen
Vijay Janapa Reddi
OffRL
AI4CE
10
312
0
13 Jun 2019
Search on the Replay Buffer: Bridging Planning and Reinforcement
  Learning
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
13
284
0
12 Jun 2019
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy
  Policies
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies
Yonathan Efroni
Nadav Merlis
Mohammad Ghavamzadeh
Shie Mannor
OffRL
14
67
0
27 May 2019
Deep Local Trajectory Replanning and Control for Robot Navigation
Deep Local Trajectory Replanning and Control for Robot Navigation
Ashwini Pokle
Roberto Martín-Martín
P. Goebel
Vincent Chow
H. Ewald
...
Zhenkai Wang
Amir Sadeghian
Dorsa Sadigh
Silvio Savarese
Marynel Vázquez
13
62
0
13 May 2019
Towards Learning Abstract Representations for Locomotion Planning in
  High-dimensional State Spaces
Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
Tobias Klamt
Sven Behnke
13
10
0
06 Mar 2019
Learning to Plan in High Dimensions via Neural Exploration-Exploitation
  Trees
Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees
Binghong Chen
Bo Dai
Qinjie Lin
Guo Ye
Han Liu
Le Song
21
51
0
28 Feb 2019
Size Independent Neural Transfer for RDDL Planning
Size Independent Neural Transfer for RDDL Planning
Sankalp Garg
Aniket Bajpai
Mausam
OffRL
11
41
0
08 Feb 2019
Variational End-to-End Navigation and Localization
Variational End-to-End Navigation and Localization
Alexander Amini
Guy Rosman
S. Karaman
Daniela Rus
14
111
0
25 Nov 2018
Concept Learning with Energy-Based Models
Concept Learning with Energy-Based Models
William J. Wilkinson
22
25
0
06 Nov 2018
A Survey and Critique of Multiagent Deep Reinforcement Learning
A Survey and Critique of Multiagent Deep Reinforcement Learning
Pablo Hernandez-Leal
Bilal Kartal
Matthew E. Taylor
OffRL
30
549
0
12 Oct 2018
Scaling All-Goals Updates in Reinforcement Learning Using Convolutional
  Neural Networks
Scaling All-Goals Updates in Reinforcement Learning Using Convolutional Neural Networks
Fabio Pardo
Vitaly Levdik
Petar Kormushev
17
4
0
06 Oct 2018
Combined Reinforcement Learning via Abstract Representations
Combined Reinforcement Learning via Abstract Representations
Vincent François-Lavet
Yoshua Bengio
Doina Precup
Joelle Pineau
OffRL
24
89
0
12 Sep 2018
Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning
Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning
Shang-Yu Su
Xiujun Li
Jianfeng Gao
Jingjing Liu
Yun-Nung (Vivian) Chen
OffRL
25
67
0
28 Aug 2018
On the Complexity of Value Iteration
On the Complexity of Value Iteration
N. Balaji
S. Kiefer
Petr Novotný
G. Pérez
M. Shirmohammadi
13
13
0
13 Jul 2018
Gated Path Planning Networks
Gated Path Planning Networks
Lisa Lee
Emilio Parisotto
Devendra Singh Chaplot
Eric P. Xing
Ruslan Salakhutdinov
24
81
0
17 Jun 2018
Learning an Approximate Model Predictive Controller with Guarantees
Learning an Approximate Model Predictive Controller with Guarantees
Michael Hertneck
Johannes Köhler
Sebastian Trimpe
Frank Allgöwer
29
219
0
11 Jun 2018
Deep Variational Reinforcement Learning for POMDPs
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank D. Wood
Shimon Whiteson
BDL
OffRL
16
258
0
06 Jun 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic
  Priors
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
18
135
0
28 May 2018
Object-Oriented Dynamics Predictor
Object-Oriented Dynamics Predictor
Guangxiang Zhu
Zhiao Huang
Chongjie Zhang
AI4CE
19
36
0
25 May 2018
Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement
  Learning for Planned-Ahead Vision-and-Language Navigation
Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation
Xin Eric Wang
Wenhan Xiong
Hongmin Wang
William Yang Wang
28
198
0
21 Mar 2018
Learning Robotic Assembly from CAD
Learning Robotic Assembly from CAD
G. Thomas
Melissa Chien
Aviv Tamar
J. A. Ojea
Pieter Abbeel
19
150
0
20 Mar 2018
Occupancy Map Prediction Using Generative and Fully Convolutional
  Networks for Vehicle Navigation
Occupancy Map Prediction Using Generative and Fully Convolutional Networks for Vehicle Navigation
Kapil D. Katyal
K. Popek
Chris Paxton
Joseph L. Moore
Kevin C. Wolfe
Philippe Burlina
Gregory Hager
GAN
27
11
0
06 Mar 2018
Sample-Efficient Reinforcement Learning through Transfer and
  Architectural Priors
Sample-Efficient Reinforcement Learning through Transfer and Architectural Priors
Benjamin Spector
Serge J. Belongie
OffRL
9
15
0
07 Jan 2018
Building Generalizable Agents with a Realistic and Rich 3D Environment
Building Generalizable Agents with a Realistic and Rich 3D Environment
Yi Wu
Yuxin Wu
Georgia Gkioxari
Yuandong Tian
3DV
50
338
0
07 Jan 2018
Unifying Map and Landmark Based Representations for Visual Navigation
Unifying Map and Landmark Based Representations for Visual Navigation
Saurabh Gupta
David Fouhey
Sergey Levine
Jitendra Malik
19
76
0
21 Dec 2017
Imagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement Learning
T. Weber
S. Racanière
David P. Reichert
Lars Buesing
A. Guez
...
Razvan Pascanu
Peter W. Battaglia
Demis Hassabis
David Silver
Daan Wierstra
LM&Ro
40
547
0
19 Jul 2017
Neural SLAM: Learning to Explore with External Memory
Neural SLAM: Learning to Explore with External Memory
Jingwei Zhang
L. Tai
Ming-Yu Liu
Joschka Boedecker
Wolfram Burgard
8
71
0
29 Jun 2017
Schema Networks: Zero-shot Transfer with a Generative Causal Model of
  Intuitive Physics
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics
Ken Kansky
Tom Silver
David A. Mély
Mohamed Eldawy
Miguel Lazaro-Gredilla
Xinghua Lou
N. Dorfman
Szymon Sidor
Scott Phoenix
Dileep George
AI4CE
37
230
0
14 Jun 2017
Generalized Value Iteration Networks: Life Beyond Lattices
Generalized Value Iteration Networks: Life Beyond Lattices
Sufeng Niu
Siheng Chen
Hanyu Guo
Colin Targonski
M. C. Smith
J. Kovacevic
GNN
19
53
0
08 Jun 2017
Deriving Neural Architectures from Sequence and Graph Kernels
Deriving Neural Architectures from Sequence and Graph Kernels
Tao Lei
Wengong Jin
Regina Barzilay
Tommi Jaakkola
GNN
42
137
0
25 May 2017
Automatic Goal Generation for Reinforcement Learning Agents
Automatic Goal Generation for Reinforcement Learning Agents
Carlos Florensa
David Held
Xinyang Geng
Pieter Abbeel
37
497
0
17 May 2017
Metacontrol for Adaptive Imagination-Based Optimization
Metacontrol for Adaptive Imagination-Based Optimization
Jessica B. Hamrick
A. J. Ballard
Razvan Pascanu
Oriol Vinyals
N. Heess
Peter W. Battaglia
24
69
0
07 May 2017
QMDP-Net: Deep Learning for Planning under Partial Observability
QMDP-Net: Deep Learning for Planning under Partial Observability
Peter Karkus
David Hsu
Wee Sun Lee
PINN
22
156
0
20 Mar 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,502
0
25 Jan 2017
The Predictron: End-To-End Learning and Planning
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
16
288
0
28 Dec 2016
Exploration for Multi-task Reinforcement Learning with Deep Generative
  Models
Exploration for Multi-task Reinforcement Learning with Deep Generative Models
Sai Praveen Bangaru
J. S. Suhas
Balaraman Ravindran
10
7
0
29 Nov 2016
Learning from the Hindsight Plan -- Episodic MPC Improvement
Learning from the Hindsight Plan -- Episodic MPC Improvement
Aviv Tamar
G. Thomas
Tianhao Zhang
Sergey Levine
Pieter Abbeel
19
64
0
28 Sep 2016
Previous
12