ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05242
  4. Cited By
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh
  Distributions and Determinantal Point Processes
v1v2v3 (latest)

Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes

16 February 2016
Nima Anari
S. Gharan
A. Rezaei
ArXiv (abs)PDFHTML

Papers citing "Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes"

44 / 44 papers shown
Title
Batch Active Learning of Reward Functions from Human Preferences
Batch Active Learning of Reward Functions from Human Preferences
Erdem Biyik
Nima Anari
Dorsa Sadigh
87
9
0
24 Feb 2024
Composable Coresets for Constrained Determinant Maximization and Beyond
Composable Coresets for Constrained Determinant Maximization and Beyond
S. Mahabadi
T. Vuong
65
1
0
01 Nov 2022
Randomly pivoted Cholesky: Practical approximation of a kernel matrix
  with few entry evaluations
Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
Yifan Chen
Ethan N. Epperly
J. Tropp
R. Webber
121
33
0
13 Jul 2022
Dual Representation Learning for Out-of-Distribution Detection
Dual Representation Learning for Out-of-Distribution Detection
Zhilin Zhao
LongBing Cao
73
3
0
19 Jun 2022
One-pass additive-error subset selection for $\ell_{p}$ subspace
  approximation
One-pass additive-error subset selection for ℓp\ell_{p}ℓp​ subspace approximation
Amit Deshpande
Rameshwar Pratap
67
4
0
26 Apr 2022
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point
  Processes via Average-Case Entropic Independence
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
Nima Anari
Yang P. Liu
T. Vuong
63
18
0
06 Apr 2022
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Insu Han
Mike Gartrell
Jennifer Gillenwater
Elvis Dohmatob
Amin Karbasi
65
4
0
20 Jan 2022
Diversified Sampling for Batched Bayesian Optimization with
  Determinantal Point Processes
Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes
Elvis Nava
Mojmír Mutný
Andreas Krause
65
15
0
22 Oct 2021
Submodular + Concave
Submodular + Concave
Siddharth Mitra
Moran Feldman
Amin Karbasi
43
19
0
09 Jun 2021
Batch Bayesian Optimization on Permutations using the Acquisition
  Weighted Kernel
Batch Bayesian Optimization on Permutations using the Acquisition Weighted Kernel
Changyong Oh
Roberto Bondesan
E. Gavves
Max Welling
56
6
0
26 Feb 2021
From Sampling to Optimization on Discrete Domains with Applications to
  Determinant Maximization
From Sampling to Optimization on Discrete Domains with Applications to Determinant Maximization
Nima Anari
T. Vuong
91
9
0
10 Feb 2021
Testing Determinantal Point Processes
Testing Determinantal Point Processes
Khashayar Gatmiry
Maryam Aliakbarpour
Stefanie Jegelka
71
1
0
09 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
82
74
0
01 Aug 2020
Sampling from a $k$-DPP without looking at all items
Sampling from a kkk-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
61
24
0
30 Jun 2020
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point
  Processes
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
Insu Han
Elvis Dohmatob
Jennifer Gillenwater
Victor-Emmanuel Brunel
60
16
0
17 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
78
81
0
07 May 2020
Improved guarantees and a multiple-descent curve for Column Subset
  Selection and the Nyström method
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nyström method
Michal Derezinski
Rajiv Khanna
Michael W. Mahoney
63
10
0
21 Feb 2020
Diversity and Inclusion Metrics in Subset Selection
Diversity and Inclusion Metrics in Subset Selection
Margaret Mitchell
Dylan K. Baker
Nyalleng Moorosi
Emily L. Denton
Ben Hutchinson
A. Hanna
Timnit Gebru
Jamie Morgenstern
FaML
214
87
0
09 Feb 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
160
54
0
28 Oct 2019
Convergence Analysis of Block Coordinate Algorithms with Determinantal
  Sampling
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
129
21
0
25 Oct 2019
Batch Active Learning Using Determinantal Point Processes
Batch Active Learning Using Determinantal Point Processes
Erdem Biyik
Kenneth Wang
Nima Anari
Dorsa Sadigh
109
62
0
19 Jun 2019
Flexible Modeling of Diversity with Strongly Log-Concave Distributions
Flexible Modeling of Diversity with Strongly Log-Concave Distributions
Joshua Robinson
S. Sra
Stefanie Jegelka
62
12
0
12 Jun 2019
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Jordan T. Ash
Chicheng Zhang
A. Krishnamurthy
John Langford
Alekh Agarwal
BDLUQCV
107
780
0
09 Jun 2019
Exact sampling of determinantal point processes with sublinear time
  preprocessing
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
105
55
0
31 May 2019
Learning Nonsymmetric Determinantal Point Processes
Learning Nonsymmetric Determinantal Point Processes
Mike Gartrell
Victor-Emmanuel Brunel
Elvis Dohmatob
Syrine Krichene
51
43
0
30 May 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
DPPNet: Approximating Determinantal Point Processes with Deep Networks
DPPNet: Approximating Determinantal Point Processes with Deep Networks
Zelda E. Mariet
Yaniv Ovadia
Jasper Snoek
71
10
0
07 Jan 2019
Fast determinantal point processes via distortion-free intermediate
  sampling
Fast determinantal point processes via distortion-free intermediate sampling
Michal Derezinski
86
40
0
08 Nov 2018
Learning Signed Determinantal Point Processes through the Principal
  Minor Assignment Problem
Learning Signed Determinantal Point Processes through the Principal Minor Assignment Problem
Victor-Emmanuel Brunel
152
28
0
01 Nov 2018
A Polynomial Time MCMC Method for Sampling from Continuous DPPs
A Polynomial Time MCMC Method for Sampling from Continuous DPPs
S. Gharan
A. Rezaei
51
4
0
20 Oct 2018
Determinantal Point Processes for Coresets
Determinantal Point Processes for Coresets
Nicolas M Tremblay
Simon Barthelmé
P. Amblard
76
32
0
23 Mar 2018
Exact Sampling of Determinantal Point Processes without
  Eigendecomposition
Exact Sampling of Determinantal Point Processes without Eigendecomposition
Claire Launay
B. Galerne
A. Desolneux
107
31
0
23 Feb 2018
Learning Determinantal Point Processes by Corrective Negative Sampling
Learning Determinantal Point Processes by Corrective Negative Sampling
Zelda E. Mariet
Mike Gartrell
S. Sra
75
3
0
15 Feb 2018
Fair and Diverse DPP-based Data Summarization
Fair and Diverse DPP-based Data Summarization
L. E. Celis
Vijay Keswani
D. Straszak
Amit Deshpande
Tarun Kathuria
Nisheeth K. Vishnoi
93
122
0
12 Feb 2018
Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
Cameron Musco
David P. Woodruff
93
58
0
11 Apr 2017
Polynomial Time Algorithms for Dual Volume Sampling
Polynomial Time Algorithms for Dual Volume Sampling
Chengtao Li
Stefanie Jegelka
S. Sra
58
31
0
08 Mar 2017
Batched Gaussian Process Bandit Optimization via Determinantal Point
  Processes
Batched Gaussian Process Bandit Optimization via Determinantal Point Processes
Tarun Kathuria
Amit Deshpande
Pushmeet Kohli
GP
67
103
0
13 Nov 2016
How to be Fair and Diverse?
How to be Fair and Diverse?
L. E. Celis
Amit Deshpande
Tarun Kathuria
Nisheeth K. Vishnoi
FaML
108
80
0
23 Oct 2016
Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and
  Constrained Sampling
Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling
Chengtao Li
Stefanie Jegelka
S. Sra
118
38
0
02 Aug 2016
On the Complexity of Constrained Determinantal Point Processes
On the Complexity of Constrained Determinantal Point Processes
L. E. Celis
Amit Deshpande
Tarun Kathuria
D. Straszak
Nisheeth K. Vishnoi
106
25
0
01 Aug 2016
Fast DPP Sampling for Nyström with Application to Kernel Methods
Fast DPP Sampling for Nyström with Application to Kernel Methods
Chengtao Li
Stefanie Jegelka
S. Sra
97
76
0
19 Mar 2016
Low-Rank Factorization of Determinantal Point Processes for
  Recommendation
Low-Rank Factorization of Determinantal Point Processes for Recommendation
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
79
77
0
17 Feb 2016
Efficient Sampling for k-Determinantal Point Processes
Efficient Sampling for k-Determinantal Point Processes
Chengtao Li
Stefanie Jegelka
S. Sra
146
52
0
04 Sep 2015
Provably Correct Algorithms for Matrix Column Subset Selection with
  Selectively Sampled Data
Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data
Yining Wang
Aarti Singh
135
22
0
17 May 2015
1