ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06725
  4. Cited By
Variational inference for Monte Carlo objectives

Variational inference for Monte Carlo objectives

22 February 2016
A. Mnih
Danilo Jimenez Rezende
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational inference for Monte Carlo objectives"

50 / 183 papers shown
Title
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
37
132
0
06 Oct 2019
Select and Attend: Towards Controllable Content Selection in Text
  Generation
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
24
28
0
10 Sep 2019
Probabilistic Models with Deep Neural Networks
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
6
12
0
09 Aug 2019
Cooperative image captioning
Cooperative image captioning
Gilad Vered
Gal Oren
Y. Atzmon
Gal Chechik
26
2
0
26 Jul 2019
A Tandem Learning Rule for Effective Training and Rapid Inference of
  Deep Spiking Neural Networks
A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks
Jibin Wu
Yansong Chua
Malu Zhang
Guoqi Li
Haizhou Li
Kay Chen Tan
21
14
0
02 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank D. Wood
14
48
0
28 Jun 2019
Teaching deep neural networks to localize single molecules for
  super-resolution microscopy
Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser
Lucas-Raphael Müller
Ulf Matti
Christopher J. Obara
Wesley R. Legant
Jonas Ries
Jakob H. Macke
Srinivas C. Turaga
11
17
0
27 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
11
11
0
14 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
26
10
0
12 Jun 2019
Importance Weighted Adversarial Variational Autoencoders for Spike
  Inference from Calcium Imaging Data
Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im
Sridhama Prakhya
Jinyao Yan
Srinivas C. Turaga
K. Branson
BDL
11
2
0
07 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,288
0
06 Jun 2019
Learning Discrete and Continuous Factors of Data via Alternating
  Disentanglement
Learning Discrete and Continuous Factors of Data via Alternating Disentanglement
Yeonwoo Jeong
Hyun Oh Song
13
48
0
23 May 2019
Unsupervised Linear and Nonlinear Channel Equalization and Decoding
  using Variational Autoencoders
Unsupervised Linear and Nonlinear Channel Equalization and Decoding using Variational Autoencoders
Avi Caciularu
D. Burshtein
12
48
0
21 May 2019
Optimizing Sequential Medical Treatments with Auto-Encoding Heuristic
  Search in POMDPs
Optimizing Sequential Medical Treatments with Auto-Encoding Heuristic Search in POMDPs
Luchen Li
Matthieu Komorowski
Aldo A. Faisal
OffRL
18
13
0
17 May 2019
Hierarchical Importance Weighted Autoencoders
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
11
15
0
13 May 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient
  Backpropagation Through Categorical Variables
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
14
23
0
04 May 2019
Unsupervised Recurrent Neural Network Grammars
Unsupervised Recurrent Neural Network Grammars
Yoon Kim
Alexander M. Rush
Lei Yu
A. Kuncoro
Chris Dyer
Gábor Melis
LRM
RALM
SSL
20
115
0
07 Apr 2019
Imitation Learning of Factored Multi-agent Reactive Models
Michael Teng
T. Le
Adam Scibior
Frank D. Wood
DRL
12
1
0
12 Mar 2019
Total stochastic gradient algorithms and applications in reinforcement
  learning
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
20
17
0
05 Feb 2019
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Paavo Parmas
C. Rasmussen
Jan Peters
Kenji Doya
8
85
0
04 Feb 2019
GO Gradient for Expectation-Based Objectives
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
18
16
0
17 Jan 2019
Undirected Graphical Models as Approximate Posteriors
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat
Evgeny Andriyash
W. Macready
14
2
0
11 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
13
45
0
07 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
27
42
0
17 Dec 2018
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
12
440
0
12 Dec 2018
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
11
38
0
19 Nov 2018
Neural Nearest Neighbors Networks
Neural Nearest Neighbors Networks
Tobias Plötz
Stefan Roth
19
338
0
30 Oct 2018
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Runjing Liu
Jeffrey Regier
Nilesh Tripuraneni
Michael I. Jordan
Jon D. McAuliffe
15
31
0
10 Oct 2018
Feature Selection using Stochastic Gates
Feature Selection using Stochastic Gates
Yutaro Yamada
Ofir Lindenbaum
S. Negahban
Y. Kluger
22
43
0
09 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
19
110
0
09 Oct 2018
Improved Gradient-Based Optimization Over Discrete Distributions
Improved Gradient-Based Optimization Over Discrete Distributions
Evgeny Andriyash
Arash Vahdat
W. Macready
16
9
0
29 Sep 2018
InfoSSM: Interpretable Unsupervised Learning of Nonparametric
  State-Space Model for Multi-modal Dynamics
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
Young-Jin Park
Han-Lim Choi
9
0
0
19 Sep 2018
A Fourier View of REINFORCE
A Fourier View of REINFORCE
Adeel Pervez
17
0
0
12 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
23
16
0
05 Aug 2018
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
Mingzhang Yin
Mingyuan Zhou
MQ
26
11
0
30 Jul 2018
Latent Alignment and Variational Attention
Latent Alignment and Variational Attention
Yuntian Deng
Yoon Kim
Justin T. Chiu
Demi Guo
Alexander M. Rush
BDL
18
110
0
10 Jul 2018
Adaptive Path-Integral Autoencoder: Representation Learning and Planning
  for Dynamical Systems
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
17
26
0
05 Jul 2018
Learning in Variational Autoencoders with Kullback-Leibler and Renyi
  Integral Bounds
Learning in Variational Autoencoders with Kullback-Leibler and Renyi Integral Bounds
Septimia Sârbu
Riccardo Volpi
Alexandra Peste
Luigi Malagò
DRL
11
0
0
05 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
11
13
0
22 Jun 2018
Accurate and Diverse Sampling of Sequences based on a "Best of Many"
  Sample Objective
Accurate and Diverse Sampling of Sequences based on a "Best of Many" Sample Objective
Apratim Bhattacharyya
Bernt Schiele
Mario Fritz
28
110
0
20 Jun 2018
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
BDL
23
256
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
17
30
0
01 Jun 2018
Theory and Experiments on Vector Quantized Autoencoders
Theory and Experiments on Vector Quantized Autoencoders
Aurko Roy
Ashish Vaswani
Arvind Neelakantan
Niki Parmar
11
85
0
28 May 2018
Flexible and accurate inference and learning for deep generative models
Flexible and accurate inference and learning for deep generative models
Eszter Vértes
M. Sahani
SyDa
BDL
11
44
0
28 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank D. Wood
BDL
9
23
0
26 May 2018
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
Arash Vahdat
Evgeny Andriyash
W. Macready
11
49
0
18 May 2018
GumBolt: Extending Gumbel trick to Boltzmann priors
GumBolt: Extending Gumbel trick to Boltzmann priors
Amir Khoshaman
Mohammad H. Amin
17
14
0
18 May 2018
Associative Compression Networks for Representation Learning
Associative Compression Networks for Representation Learning
Alex Graves
Jacob Menick
Aaron van den Oord
CML
7
20
0
06 Apr 2018
Variational Rejection Sampling
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
15
32
0
05 Apr 2018
Stochastic Variational Inference with Gradient Linearization
Stochastic Variational Inference with Gradient Linearization
Tobias Plötz
Anne S. Wannenwetsch
Stefan Roth
6
2
0
28 Mar 2018
Previous
1234
Next