Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06725
Cited By
Variational inference for Monte Carlo objectives
22 February 2016
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational inference for Monte Carlo objectives"
50 / 183 papers shown
Title
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
37
132
0
06 Oct 2019
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
24
28
0
10 Sep 2019
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
6
12
0
09 Aug 2019
Cooperative image captioning
Gilad Vered
Gal Oren
Y. Atzmon
Gal Chechik
26
2
0
26 Jul 2019
A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks
Jibin Wu
Yansong Chua
Malu Zhang
Guoqi Li
Haizhou Li
Kay Chen Tan
21
14
0
02 Jul 2019
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank D. Wood
14
48
0
28 Jun 2019
Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser
Lucas-Raphael Müller
Ulf Matti
Christopher J. Obara
Wesley R. Legant
Jonas Ries
Jakob H. Macke
Srinivas C. Turaga
11
17
0
27 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
11
11
0
14 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
26
10
0
12 Jun 2019
Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im
Sridhama Prakhya
Jinyao Yan
Srinivas C. Turaga
K. Branson
BDL
11
2
0
07 Jun 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,288
0
06 Jun 2019
Learning Discrete and Continuous Factors of Data via Alternating Disentanglement
Yeonwoo Jeong
Hyun Oh Song
13
48
0
23 May 2019
Unsupervised Linear and Nonlinear Channel Equalization and Decoding using Variational Autoencoders
Avi Caciularu
D. Burshtein
12
48
0
21 May 2019
Optimizing Sequential Medical Treatments with Auto-Encoding Heuristic Search in POMDPs
Luchen Li
Matthieu Komorowski
Aldo A. Faisal
OffRL
18
13
0
17 May 2019
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
11
15
0
13 May 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
14
23
0
04 May 2019
Unsupervised Recurrent Neural Network Grammars
Yoon Kim
Alexander M. Rush
Lei Yu
A. Kuncoro
Chris Dyer
Gábor Melis
LRM
RALM
SSL
20
115
0
07 Apr 2019
Imitation Learning of Factored Multi-agent Reactive Models
Michael Teng
T. Le
Adam Scibior
Frank D. Wood
DRL
12
1
0
12 Mar 2019
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
20
17
0
05 Feb 2019
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Paavo Parmas
C. Rasmussen
Jan Peters
Kenji Doya
8
85
0
04 Feb 2019
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
18
16
0
17 Jan 2019
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat
Evgeny Andriyash
W. Macready
14
2
0
11 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
13
45
0
07 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
27
42
0
17 Dec 2018
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
12
440
0
12 Dec 2018
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
11
38
0
19 Nov 2018
Neural Nearest Neighbors Networks
Tobias Plötz
Stefan Roth
19
338
0
30 Oct 2018
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Runjing Liu
Jeffrey Regier
Nilesh Tripuraneni
Michael I. Jordan
Jon D. McAuliffe
15
31
0
10 Oct 2018
Feature Selection using Stochastic Gates
Yutaro Yamada
Ofir Lindenbaum
S. Negahban
Y. Kluger
22
43
0
09 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
19
110
0
09 Oct 2018
Improved Gradient-Based Optimization Over Discrete Distributions
Evgeny Andriyash
Arash Vahdat
W. Macready
16
9
0
29 Sep 2018
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
Young-Jin Park
Han-Lim Choi
9
0
0
19 Sep 2018
A Fourier View of REINFORCE
Adeel Pervez
17
0
0
12 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
23
16
0
05 Aug 2018
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
Mingzhang Yin
Mingyuan Zhou
MQ
26
11
0
30 Jul 2018
Latent Alignment and Variational Attention
Yuntian Deng
Yoon Kim
Justin T. Chiu
Demi Guo
Alexander M. Rush
BDL
18
110
0
10 Jul 2018
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
17
26
0
05 Jul 2018
Learning in Variational Autoencoders with Kullback-Leibler and Renyi Integral Bounds
Septimia Sârbu
Riccardo Volpi
Alexandra Peste
Luigi Malagò
DRL
11
0
0
05 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
11
13
0
22 Jun 2018
Accurate and Diverse Sampling of Sequences based on a "Best of Many" Sample Objective
Apratim Bhattacharyya
Bernt Schiele
Mario Fritz
28
110
0
20 Jun 2018
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
BDL
23
256
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
17
30
0
01 Jun 2018
Theory and Experiments on Vector Quantized Autoencoders
Aurko Roy
Ashish Vaswani
Arvind Neelakantan
Niki Parmar
11
85
0
28 May 2018
Flexible and accurate inference and learning for deep generative models
Eszter Vértes
M. Sahani
SyDa
BDL
11
44
0
28 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank D. Wood
BDL
9
23
0
26 May 2018
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
Arash Vahdat
Evgeny Andriyash
W. Macready
11
49
0
18 May 2018
GumBolt: Extending Gumbel trick to Boltzmann priors
Amir Khoshaman
Mohammad H. Amin
17
14
0
18 May 2018
Associative Compression Networks for Representation Learning
Alex Graves
Jacob Menick
Aaron van den Oord
CML
7
20
0
06 Apr 2018
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
15
32
0
05 Apr 2018
Stochastic Variational Inference with Gradient Linearization
Tobias Plötz
Anne S. Wannenwetsch
Stefan Roth
6
2
0
28 Mar 2018
Previous
1
2
3
4
Next