Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06725
Cited By
Variational inference for Monte Carlo objectives
22 February 2016
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational inference for Monte Carlo objectives"
50 / 183 papers shown
Title
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
6
7
0
26 Oct 2021
Guiding Visual Question Generation
Nihir Vedd
Zixu Wang
Marek Rei
Yishu Miao
Lucia Specia
81
23
0
15 Oct 2021
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
K. Young
23
0
0
14 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface
T. Le
K. M. Collins
Luke B. Hewitt
Kevin Ellis
N. Siddharth
S. Gershman
J. Tenenbaum
122
5
0
04 Jul 2021
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDL
DRL
19
44
0
30 Jun 2021
Learning to Time-Decode in Spiking Neural Networks Through the Information Bottleneck
N. Skatchkovsky
Osvaldo Simeone
Hyeryung Jang
25
20
0
02 Jun 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
Alek Dimitriev
Mingyuan Zhou
14
12
0
28 May 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time Series
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDL
AI4TS
20
2
0
20 May 2021
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
Jie Ren
Yewen Li
Zihan Ding
Wei Pan
Hao Dong
BDL
MoE
8
25
0
19 Apr 2021
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
23
15
0
01 Apr 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
28
69
0
15 Feb 2021
Learning Interpretable Deep State Space Model for Probabilistic Time Series Forecasting
Longyuan Li
Junchi Yan
Xiaokang Yang
Yaohui Jin
OOD
BDL
AI4TS
37
60
0
31 Jan 2021
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
19
15
0
18 Jan 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
16
11
0
16 Dec 2020
Mutual Information Constraints for Monte-Carlo Objectives
Gábor Melis
András Gyorgy
Phil Blunsom
16
1
0
01 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Cheng Zhang
BDL
18
27
0
01 Dec 2020
Latent Template Induction with Gumbel-CRFs
Yao Fu
Chuanqi Tan
Bin Bi
Mosha Chen
Yansong Feng
Alexander M. Rush
BDL
11
12
0
29 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
6
3
0
01 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank D. Wood
11
5
0
29 Oct 2020
Probabilistic Circuits for Variational Inference in Discrete Graphical Models
Andy Shih
Stefano Ermon
TPM
18
20
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
136
48
0
20 Oct 2020
PAC
m
^m
m
-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
79
16
0
19 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
39
38
0
09 Oct 2020
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Valentin Liévin
Andrea Dittadi
Anders Christensen
Ole Winther
DRL
14
6
0
05 Aug 2020
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDL
DRL
19
10
0
29 Jul 2020
Multi-Sample Online Learning for Probabilistic Spiking Neural Networks
Hyeryung Jang
Osvaldo Simeone
11
0
0
23 Jul 2020
Learning to learn generative programs with Memoised Wake-Sleep
Luke B. Hewitt
T. Le
J. Tenenbaum
CLL
12
26
0
06 Jul 2020
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
22
22
0
03 Jul 2020
Semi-supervised Sequential Generative Models
Michael Teng
T. Le
Adam Scibior
Frank D. Wood
BDL
AI4TS
25
3
0
30 Jun 2020
Lattice Representation Learning
Luis A. Lastras
9
1
0
24 Jun 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
6
32
0
18 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Posterior Control of Blackbox Generation
Xiang Lisa Li
Alexander M. Rush
19
25
0
10 May 2020
VOWEL: A Local Online Learning Rule for Recurrent Networks of Probabilistic Spiking Winner-Take-All Circuits
Hyeryung Jang
N. Skatchkovsky
Osvaldo Simeone
22
11
0
20 Apr 2020
Learning Discrete Structured Representations by Adversarially Maximizing Mutual Information
K. Stratos
Sam Wiseman
SSL
DRL
6
7
0
08 Apr 2020
Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip
Yuxuan Song
Minkai Xu
Lantao Yu
Hao Zhou
Shuo Shao
Yong Yu
AAML
19
16
0
03 Apr 2020
Neural Communication Systems with Bandwidth-limited Channel
Karen Ullrich
Fabio Viola
Danilo Jimenez Rezende
15
1
0
30 Mar 2020
A Better Variant of Self-Critical Sequence Training
Ruotian Luo
BDL
22
37
0
22 Mar 2020
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Weonyoung Joo
Dongjun Kim
Seung-Jae Shin
Il-Chul Moon
21
1
0
04 Mar 2020
VQ-DRAW: A Sequential Discrete VAE
Alex Nichol
BDL
12
3
0
03 Mar 2020
Analysis of diversity-accuracy tradeoff in image captioning
Ruotian Luo
Gregory Shakhnarovich
9
12
0
27 Feb 2020
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
23
49
0
14 Feb 2020
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
19
16
0
22 Jan 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
29
29
0
19 Dec 2019
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
37
6
0
05 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan Willem van de Meent
17
7
0
04 Nov 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
16
31
0
31 Oct 2019
Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
Eliezer de Souza da Silva
Tomasz Ku'smierczyk
M. Hartmann
Arto Klami
14
2
0
27 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
20
11
0
11 Oct 2019
Previous
1
2
3
4
Next