ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06725
  4. Cited By
Variational inference for Monte Carlo objectives

Variational inference for Monte Carlo objectives

22 February 2016
A. Mnih
Danilo Jimenez Rezende
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational inference for Monte Carlo objectives"

50 / 183 papers shown
Title
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
6
7
0
26 Oct 2021
Guiding Visual Question Generation
Guiding Visual Question Generation
Nihir Vedd
Zixu Wang
Marek Rei
Yishu Miao
Lucia Specia
81
23
0
15 Oct 2021
Hindsight Network Credit Assignment: Efficient Credit Assignment in
  Networks of Discrete Stochastic Units
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
K. Young
23
0
0
14 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
Hybrid Memoised Wake-Sleep: Approximate Inference at the
  Discrete-Continuous Interface
Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface
T. Le
K. M. Collins
Luke B. Hewitt
Kevin Ellis
N. Siddharth
S. Gershman
J. Tenenbaum
122
5
0
04 Jul 2021
Monte Carlo Variational Auto-Encoders
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDL
DRL
19
44
0
30 Jun 2021
Learning to Time-Decode in Spiking Neural Networks Through the
  Information Bottleneck
Learning to Time-Decode in Spiking Neural Networks Through the Information Bottleneck
N. Skatchkovsky
Osvaldo Simeone
Hyeryung Jang
25
20
0
02 Jun 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
Alek Dimitriev
Mingyuan Zhou
14
12
0
28 May 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives
  to Learn Generative Model and Neural Adaptive Proposal for Time Series
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time Series
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDL
AI4TS
20
2
0
20 May 2021
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement
  Learning
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
Jie Ren
Yewen Li
Zihan Ding
Wei Pan
Hao Dong
BDL
MoE
8
25
0
19 Apr 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
23
15
0
01 Apr 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
28
69
0
15 Feb 2021
Learning Interpretable Deep State Space Model for Probabilistic Time
  Series Forecasting
Learning Interpretable Deep State Space Model for Probabilistic Time Series Forecasting
Longyuan Li
Junchi Yan
Xiaokang Yang
Yaohui Jin
OOD
BDL
AI4TS
37
60
0
31 Jan 2021
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
19
15
0
18 Jan 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
16
11
0
16 Dec 2020
Mutual Information Constraints for Monte-Carlo Objectives
Mutual Information Constraints for Monte-Carlo Objectives
Gábor Melis
András Gyorgy
Phil Blunsom
16
1
0
01 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing
  Flows
Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Cheng Zhang
BDL
18
27
0
01 Dec 2020
Latent Template Induction with Gumbel-CRFs
Latent Template Induction with Gumbel-CRFs
Yao Fu
Chuanqi Tan
Bin Bi
Mosha Chen
Yansong Feng
Alexander M. Rush
BDL
11
12
0
29 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
6
3
0
01 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank D. Wood
11
5
0
29 Oct 2020
Probabilistic Circuits for Variational Inference in Discrete Graphical
  Models
Probabilistic Circuits for Variational Inference in Discrete Graphical Models
Andy Shih
Stefano Ermon
TPM
18
20
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
136
48
0
20 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
79
16
0
19 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
39
38
0
09 Oct 2020
Optimal Variance Control of the Score Function Gradient Estimator for
  Importance Weighted Bounds
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Valentin Liévin
Andrea Dittadi
Anders Christensen
Ole Winther
DRL
14
6
0
05 Aug 2020
Approximation Based Variance Reduction for Reparameterization Gradients
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDL
DRL
19
10
0
29 Jul 2020
Multi-Sample Online Learning for Probabilistic Spiking Neural Networks
Multi-Sample Online Learning for Probabilistic Spiking Neural Networks
Hyeryung Jang
Osvaldo Simeone
11
0
0
23 Jul 2020
Learning to learn generative programs with Memoised Wake-Sleep
Learning to learn generative programs with Memoised Wake-Sleep
Luke B. Hewitt
T. Le
J. Tenenbaum
CLL
12
26
0
06 Jul 2020
Efficient Marginalization of Discrete and Structured Latent Variables
  via Sparsity
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
22
22
0
03 Jul 2020
Semi-supervised Sequential Generative Models
Semi-supervised Sequential Generative Models
Michael Teng
T. Le
Adam Scibior
Frank D. Wood
BDL
AI4TS
25
3
0
30 Jun 2020
Lattice Representation Learning
Lattice Representation Learning
Luis A. Lastras
9
1
0
24 Jun 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
6
32
0
18 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Posterior Control of Blackbox Generation
Posterior Control of Blackbox Generation
Xiang Lisa Li
Alexander M. Rush
19
25
0
10 May 2020
VOWEL: A Local Online Learning Rule for Recurrent Networks of
  Probabilistic Spiking Winner-Take-All Circuits
VOWEL: A Local Online Learning Rule for Recurrent Networks of Probabilistic Spiking Winner-Take-All Circuits
Hyeryung Jang
N. Skatchkovsky
Osvaldo Simeone
22
11
0
20 Apr 2020
Learning Discrete Structured Representations by Adversarially Maximizing
  Mutual Information
Learning Discrete Structured Representations by Adversarially Maximizing Mutual Information
K. Stratos
Sam Wiseman
SSL
DRL
6
7
0
08 Apr 2020
Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip
Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip
Yuxuan Song
Minkai Xu
Lantao Yu
Hao Zhou
Shuo Shao
Yong Yu
AAML
19
16
0
03 Apr 2020
Neural Communication Systems with Bandwidth-limited Channel
Neural Communication Systems with Bandwidth-limited Channel
Karen Ullrich
Fabio Viola
Danilo Jimenez Rezende
15
1
0
30 Mar 2020
A Better Variant of Self-Critical Sequence Training
A Better Variant of Self-Critical Sequence Training
Ruotian Luo
BDL
22
37
0
22 Mar 2020
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete
  Random Variables
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Weonyoung Joo
Dongjun Kim
Seung-Jae Shin
Il-Chul Moon
21
1
0
04 Mar 2020
VQ-DRAW: A Sequential Discrete VAE
VQ-DRAW: A Sequential Discrete VAE
Alex Nichol
BDL
12
3
0
03 Mar 2020
Analysis of diversity-accuracy tradeoff in image captioning
Analysis of diversity-accuracy tradeoff in image captioning
Ruotian Luo
Gregory Shakhnarovich
9
12
0
27 Feb 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
23
49
0
14 Feb 2020
Joint Distributions for TensorFlow Probability
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
19
16
0
22 Jan 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
29
29
0
19 Dec 2019
A Rule for Gradient Estimator Selection, with an Application to
  Variational Inference
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
37
6
0
05 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan Willem van de Meent
17
7
0
04 Nov 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
16
31
0
31 Oct 2019
Prior Specification for Bayesian Matrix Factorization via Prior
  Predictive Matching
Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
Eliezer de Souza da Silva
Tomasz Ku'smierczyk
M. Hartmann
Arto Klami
14
2
0
27 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
20
11
0
11 Oct 2019
Previous
1234
Next