Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06725
Cited By
Variational inference for Monte Carlo objectives
22 February 2016
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational inference for Monte Carlo objectives"
33 / 183 papers shown
Title
Fast Decoding in Sequence Models using Discrete Latent Variables
Łukasz Kaiser
Aurko Roy
Ashish Vaswani
Niki Parmar
Samy Bengio
Jakob Uszkoreit
Noam M. Shazeer
11
230
0
09 Mar 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
10
1,327
0
16 Feb 2018
DVAE++: Discrete Variational Autoencoders with Overlapping Transformations
Arash Vahdat
W. Macready
Zhengbing Bian
Amir Khoshaman
Evgeny Andriyash
37
75
0
14 Feb 2018
Efficient Model-Based Deep Reinforcement Learning with Variational State Tabulation
Dane S. Corneil
W. Gerstner
Johanni Brea
OffRL
8
62
0
12 Feb 2018
Using probabilistic programs as proposals
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
16
11
0
11 Jan 2018
Truncated Variational Sampling for "Black Box" Optimization of Generative Models
Jörg Lücke
Zhenwen Dai
Georgios Exarchakis
DRL
14
7
0
21 Dec 2017
Learning Sparse Neural Networks through
L
0
L_0
L
0
Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
31
1,128
0
04 Dec 2017
Asymmetric Variational Autoencoders
Guoqing Zheng
Yiming Yang
J. Carbonell
BDL
17
2
0
20 Nov 2017
Neural Variational Inference and Learning in Undirected Graphical Models
Volodymyr Kuleshov
Stefano Ermon
BDL
21
34
0
07 Nov 2017
Fast amortized inference of neural activity from calcium imaging data with variational autoencoders
Artur Speiser
Jinyao Yan
Evan Archer
Lars Buesing
Srinivas C. Turaga
Jakob H. Macke
BDL
19
47
0
06 Nov 2017
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
23
4,811
0
02 Nov 2017
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
D. Duvenaud
36
300
0
31 Oct 2017
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
23
197
0
14 Oct 2017
Variational Memory Addressing in Generative Models
J. Bornschein
A. Mnih
Daniel Zoran
Danilo Jimenez Rezende
BDL
28
63
0
21 Sep 2017
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCV
BDL
35
43
0
18 Sep 2017
An online sequence-to-sequence model for noisy speech recognition
Chung-Cheng Chiu
Dieterich Lawson
Yuping Luo
George Tucker
Kevin Swersky
Ilya Sutskever
Navdeep Jaitly
11
7
0
16 Jun 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
6
21
0
24 May 2017
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
15
3
0
24 May 2017
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
22
84
0
22 May 2017
Learning Hard Alignments with Variational Inference
Dieterich Lawson
Chung-Cheng Chiu
George Tucker
Colin Raffel
Kevin Swersky
Navdeep Jaitly
DRL
15
29
0
16 May 2017
Discrete Sequential Prediction of Continuous Actions for Deep RL
Luke Metz
Julian Ibarz
Navdeep Jaitly
James Davidson
BDL
OffRL
20
116
0
14 May 2017
VAE Learning via Stein Variational Gradient Descent
Yunchen Pu
Zhe Gan
Ricardo Henao
Chunyuan Li
Shaobo Han
Lawrence Carin
DRL
18
6
0
18 Apr 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
19
282
0
21 Mar 2017
Particle Value Functions
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Arnaud Doucet
A. Mnih
Yee Whye Teh
12
15
0
16 Mar 2017
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
18
170
0
27 Feb 2017
Adaptive Feature Abstraction for Translating Video to Text
Yunchen Pu
Martin Renqiang Min
Zhe Gan
Lawrence Carin
39
14
0
23 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
84
5,283
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
18
2,504
0
02 Nov 2016
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
13
81
0
18 Oct 2016
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
32
254
0
07 Sep 2016
Unsupervised Learning of 3D Structure from Images
Danilo Jimenez Rezende
S. M. Ali Eslami
S. Mohamed
Peter W. Battaglia
Max Jaderberg
N. Heess
3DV
SSL
DRL
17
395
0
03 Jul 2016
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
22
87
0
16 Feb 2016
Previous
1
2
3
4