ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00389
  4. Cited By
Multi-Information Source Optimization

Multi-Information Source Optimization

1 March 2016
Matthias Poloczek
Jialei Wang
P. Frazier
ArXivPDFHTML

Papers citing "Multi-Information Source Optimization"

50 / 103 papers shown
Title
Interim Report on Human-Guided Adaptive Hyperparameter Optimization with Multi-Fidelity Sprints
Interim Report on Human-Guided Adaptive Hyperparameter Optimization with Multi-Fidelity Sprints
Michael Kamfonas
16
0
0
14 May 2025
Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework
Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework
Thomson Yen
Andrew Siah
Haozhe Chen
Tianyi Peng
Daniel Guetta
Hongseok Namkoong
48
0
0
26 Mar 2025
Bayesian Optimization for Unknown Cost-Varying Variable Subsets with
  No-Regret Costs
Bayesian Optimization for Unknown Cost-Varying Variable Subsets with No-Regret Costs
Vu Viet Hoang
Quoc Anh Hoang Nguyen
Hung Tran The
79
0
0
20 Dec 2024
Rate-Informed Discovery via Bayesian Adaptive Multifidelity Sampling
Rate-Informed Discovery via Bayesian Adaptive Multifidelity Sampling
Aman Sinha
Payam Nikdel
Supratik Paul
Shimon Whiteson
76
0
0
26 Nov 2024
Multifidelity Cross-validation
Multifidelity Cross-validation
Sudharshan Ashwin Renganathan
Kade Carlson
33
0
0
01 Jul 2024
Improving Hyperparameter Optimization with Checkpointed Model Weights
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta
Jonathan Lorraine
Steve Masson
Ramanathan Arunachalam
Zaid Pervaiz Bhat
James Lucas
Arun George Zachariah
49
4
0
26 Jun 2024
Active learning for affinity prediction of antibodies
Active learning for affinity prediction of antibodies
Alexandra Gessner
Sebastian W. Ober
Owen Vickery
Dino Oglic
Talip Uçar
AI4CE
26
4
0
11 Jun 2024
Optimal Multi-Fidelity Best-Arm Identification
Optimal Multi-Fidelity Best-Arm Identification
Riccardo Poiani
Rémy Degenne
Emilie Kaufmann
Alberto Maria Metelli
Marcello Restelli
16
1
0
05 Jun 2024
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided
  by a Function Prior
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior
Shuyu Cheng
Yibo Miao
Yinpeng Dong
Xiao Yang
Xiao-Shan Gao
Jun Zhu
AAML
35
3
0
29 May 2024
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of
  Learning Curve Extrapolation
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation
Dong Bok Lee
Aoxuan Silvia Zhang
Byung-Hoon Kim
Junhyeon Park
Juho Lee
Sung Ju Hwang
Haebeom Lee
34
1
0
28 May 2024
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local
  Multi-Fidelity Bayesian Optimization
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
Wei-Ting Tang
J. Paulson
15
1
0
13 May 2024
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
45
5
0
14 Mar 2024
Multifidelity linear regression for scientific machine learning from
  scarce data
Multifidelity linear regression for scientific machine learning from scarce data
Elizabeth Qian
Dayoung Kang
Vignesh Sella
Anirban Chaudhuri
AI4CE
81
1
0
13 Mar 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
52
2
0
22 Feb 2024
FlexHB: a More Efficient and Flexible Framework for Hyperparameter
  Optimization
FlexHB: a More Efficient and Flexible Framework for Hyperparameter Optimization
Yang Zhang
Haiyang Wu
Yuekui Yang
43
0
0
21 Feb 2024
Multi-Fidelity Methods for Optimization: A Survey
Multi-Fidelity Methods for Optimization: A Survey
Ke Li
Fan Li
AI4CE
35
6
0
15 Feb 2024
Combining additivity and active subspaces for high-dimensional Gaussian
  process modeling
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
28
0
0
06 Feb 2024
Long-run Behaviour of Multi-fidelity Bayesian Optimisation
Long-run Behaviour of Multi-fidelity Bayesian Optimisation
G. Dovonon
Jakob Zeitler
29
1
0
19 Dec 2023
Scalable Meta-Learning with Gaussian Processes
Scalable Meta-Learning with Gaussian Processes
Petru Tighineanu
Lukas Großberger
P. Baireuther
Kathrin Skubch
Stefan Falkner
Julia Vinogradska
Felix Berkenkamp
26
4
0
01 Dec 2023
A Bayesian approach for prompt optimization in pre-trained language
  models
A Bayesian approach for prompt optimization in pre-trained language models
Antonio Sabbatella
Andrea Ponti
Antonio Candelieri
I. Giordani
F. Archetti
31
1
0
01 Dec 2023
Bounce: Reliable High-Dimensional Bayesian Optimization for
  Combinatorial and Mixed Spaces
Bounce: Reliable High-Dimensional Bayesian Optimization for Combinatorial and Mixed Spaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
32
12
0
02 Jul 2023
Physics-Informed Machine Learning for Modeling and Control of Dynamical
  Systems
Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
Truong X. Nghiem
Ján Drgoňa
Colin N. Jones
Zoltán Nagy
Roland Schwan
...
J. Paulson
Andrea Carron
M. Zeilinger
Wenceslao Shaw-Cortez
D. Vrabie
PINN
AI4CE
34
30
0
24 Jun 2023
Differentiable Multi-Fidelity Fusion: Efficient Learning of Physics
  Simulations with Neural Architecture Search and Transfer Learning
Differentiable Multi-Fidelity Fusion: Efficient Learning of Physics Simulations with Neural Architecture Search and Transfer Learning
Yuwen Deng
Wang Kang
Wei W. Xing
OOD
AI4CE
34
0
0
12 Jun 2023
Hyper-parameter Tuning for Adversarially Robust Models
Hyper-parameter Tuning for Adversarially Robust Models
Pedro Mendes
Paolo Romano
David Garlan
AAML
19
2
0
05 Apr 2023
Scalable Bayesian optimization with high-dimensional outputs using
  randomized prior networks
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
19
1
0
14 Feb 2023
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
A. Maurais
Terrence Alsup
Benjamin Peherstorfer
Youssef Marzouk
25
7
0
31 Jan 2023
GAR: Generalized Autoregression for Multi-Fidelity Fusion
GAR: Generalized Autoregression for Multi-Fidelity Fusion
Yuxin Wang
Zhengrong Xing
Wei W. Xing
AI4CE
14
3
0
13 Jan 2023
On Noisy Evaluation in Federated Hyperparameter Tuning
On Noisy Evaluation in Federated Hyperparameter Tuning
Kevin Kuo
Pratiksha Thaker
M. Khodak
John Nguyen
Daniel Jiang
Ameet Talwalkar
Virginia Smith
FedML
37
8
0
17 Dec 2022
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
P. Mikkola
Julien Martinelli
Louis Filstroff
Samuel Kaski
30
10
0
25 Oct 2022
Efficient computation of the Knowledge Gradient for Bayesian
  Optimization
Efficient computation of the Knowledge Gradient for Bayesian Optimization
Juan Ungredda
Michael Pearce
Juergen Branke
35
2
0
30 Sep 2022
Non-Myopic Multifidelity Bayesian Optimization
Non-Myopic Multifidelity Bayesian Optimization
Francesco Di Fiore
L. Mainini
11
3
0
13 Jul 2022
Pre-training helps Bayesian optimization too
Pre-training helps Bayesian optimization too
Z. Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zelda E. Mariet
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
20
9
0
07 Jul 2022
On Provably Robust Meta-Bayesian Optimization
On Provably Robust Meta-Bayesian Optimization
Zhongxiang Dai
Yizhou Chen
Haibin Yu
K. H. Low
P. Jaillet
AAML
20
10
0
14 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Bin Cui
33
15
0
06 Jun 2022
Towards Learning Universal Hyperparameter Optimizers with Transformers
Towards Learning Universal Hyperparameter Optimizers with Transformers
Yutian Chen
Xingyou Song
Chansoo Lee
Z. Wang
Qiuyi Zhang
...
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
26
63
0
26 May 2022
Fair and Green Hyperparameter Optimization via Multi-objective and
  Multiple Information Source Bayesian Optimization
Fair and Green Hyperparameter Optimization via Multi-objective and Multiple Information Source Bayesian Optimization
Antonio Candelieri
Andrea Ponti
F. Archetti
27
15
0
18 May 2022
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
16
23
0
05 May 2022
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Martin Wistuba
Arlind Kadra
Josif Grabocka
20
14
0
20 Feb 2022
SnAKe: Bayesian Optimization with Pathwise Exploration
SnAKe: Bayesian Optimization with Pathwise Exploration
Jose Pablo Folch
Shiqiang Zhang
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
27
19
0
31 Jan 2022
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Jixiang Li
Ji Liu
Ce Zhang
Bin Cui
30
26
0
18 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
20
35
0
02 Jan 2022
Transfer Learning with Gaussian Processes for Bayesian Optimization
Transfer Learning with Gaussian Processes for Bayesian Optimization
Petru Tighineanu
Kathrin Skubch
P. Baireuther
Attila Reiss
Felix Berkenkamp
Julia Vinogradska
14
32
0
22 Nov 2021
Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs
Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs
Raul Astudillo
Daniel R. Jiang
Maximilian Balandat
E. Bakshy
P. Frazier
8
18
0
12 Nov 2021
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
22
35
0
04 Nov 2021
Pre-trained Gaussian processes for Bayesian optimization
Pre-trained Gaussian processes for Bayesian optimization
Z. Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
55
40
0
16 Sep 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
7
0
05 Aug 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Bin Cui
LRM
29
44
0
19 Jul 2021
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive
  Networks
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks
Shibo Li
Robert M. Kirby
Shandian Zhe
16
13
0
18 Jun 2021
Nonmyopic Multifidelity Active Search
Nonmyopic Multifidelity Active Search
Quan Nguyen
Arghavan Modiri
Roman Garnett
13
1
0
11 Jun 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
33
22
0
10 Jun 2021
123
Next