ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00389
  4. Cited By
Multi-Information Source Optimization

Multi-Information Source Optimization

1 March 2016
Matthias Poloczek
Jialei Wang
P. Frazier
ArXivPDFHTML

Papers citing "Multi-Information Source Optimization"

50 / 103 papers shown
Title
OpenBox: A Generalized Black-box Optimization Service
OpenBox: A Generalized Black-box Optimization Service
Yang Li
Yu Shen
Wentao Zhang
Yuan-Wei Chen
Huaijun Jiang
...
Jinyang Gao
Wentao Wu
Zhi-Xin Yang
Ce Zhang
Bin Cui
11
76
0
01 Jun 2021
Bayesian Optimisation for Constrained Problems
Bayesian Optimisation for Constrained Problems
Juan Ungredda
Juergen Branke
21
13
0
27 May 2021
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
24
289
0
20 Apr 2021
Problem-fluent models for complex decision-making in autonomous
  materials research
Problem-fluent models for complex decision-making in autonomous materials research
Soojung Baek
Kristofer G. Reyes
AI4CE
13
2
0
13 Mar 2021
MISO-wiLDCosts: Multi Information Source Optimization with Location
  Dependent Costs
MISO-wiLDCosts: Multi Information Source Optimization with Location Dependent Costs
Antonio Candelieri
F. Archetti
16
2
0
09 Feb 2021
Warm Starting CMA-ES for Hyperparameter Optimization
Warm Starting CMA-ES for Hyperparameter Optimization
Masahiro Nomura
Shuhei Watanabe
Youhei Akimoto
Yoshihiko Ozaki
Masaki Onishi
19
40
0
13 Dec 2020
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Bin Cui
14
33
0
08 Dec 2020
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
Yang Li
Yu Shen
Jiawei Jiang
Jinyang Gao
Ce Zhang
Bin Cui
11
26
0
05 Dec 2020
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Shibo Li
Robert M. Kirby
Shandian Zhe
AI4CE
15
28
0
02 Dec 2020
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian
  Optimization
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization
Gauthier Guinet
Valerio Perrone
Cédric Archambeau
16
14
0
23 Nov 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
89
109
0
20 Oct 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep
  Reinforcement Learning
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
15
12
0
29 Jul 2020
Sequential design of multi-fidelity computer experiments: maximizing the
  rate of stepwise uncertainty reduction
Sequential design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction
Rémi Stroh
Julien Bect
S. Demeyer
N. Fischer
Damien Marquis
E. Vázquez
14
13
0
27 Jul 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Learning excursion sets of vector-valued Gaussian random fields for
  autonomous ocean sampling
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
T. Fossum
Cédric Travelletti
J. Eidsvik
D. Ginsbourger
K. Rajan
9
18
0
07 Jul 2020
Multi-Fidelity Bayesian Optimization via Deep Neural Networks
Multi-Fidelity Bayesian Optimization via Deep Neural Networks
Shibo Li
Wei W. Xing
Mike Kirby
Shandian Zhe
10
53
0
06 Jul 2020
BOSH: Bayesian Optimization by Sampling Hierarchically
BOSH: Bayesian Optimization by Sampling Hierarchically
Henry B. Moss
David S. Leslie
Paul Rayson
6
8
0
02 Jul 2020
Green Machine Learning via Augmented Gaussian Processes and
  Multi-Information Source Optimization
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
R. Perego
F. Archetti
17
16
0
25 Jun 2020
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
13
33
0
22 Jun 2020
Efficient Hyperparameter Optimization under Multi-Source Covariate Shift
Efficient Hyperparameter Optimization under Multi-Source Covariate Shift
Masahiro Nomura
Yuta Saito
6
9
0
18 Jun 2020
Bayesian optimization for modular black-box systems with switching costs
Bayesian optimization for modular black-box systems with switching costs
Chi-Heng Lin
Joseph D. Miano
Eva L. Dyer
6
5
0
04 Jun 2020
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
18
5
0
24 Mar 2020
Cost-aware Bayesian Optimization
Cost-aware Bayesian Optimization
E. Lee
Valerio Perrone
Cédric Archambeau
Matthias Seeger
11
56
0
22 Mar 2020
Adaptive Batching for Gaussian Process Surrogates with Application in
  Noisy Level Set Estimation
Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
Xiong Lyu
M. Ludkovski
25
4
0
19 Mar 2020
Practical Bayesian Optimization of Objectives with Conditioning
  Variables
Practical Bayesian Optimization of Objectives with Conditioning Variables
Michael Pearce
Janis Klaise
Matthew J. Groves
18
1
0
23 Feb 2020
Why Non-myopic Bayesian Optimization is Promising and How Far Should We
  Look-ahead? A Study via Rollout
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout
Xubo Yue
Raed Al Kontar
18
37
0
04 Nov 2019
Bayesian Optimization Allowing for Common Random Numbers
Bayesian Optimization Allowing for Common Random Numbers
Michael Pearce
Matthias Poloczek
Juergen Branke
BDL
11
23
0
21 Oct 2019
Dynamic Subgoal-based Exploration via Bayesian Optimization
Dynamic Subgoal-based Exploration via Bayesian Optimization
Yijia Wang
Matthias Poloczek
Daniel R. Jiang
26
3
0
21 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
mfEGRA: Multifidelity Efficient Global Reliability Analysis through
  Active Learning for Failure Boundary Location
mfEGRA: Multifidelity Efficient Global Reliability Analysis through Active Learning for Failure Boundary Location
A. Chaudhuri
A. Marques
Karen E. Willcox
19
24
0
06 Oct 2019
Active learning for level set estimation under cost-dependent input
  uncertainty
Active learning for level set estimation under cost-dependent input uncertainty
Yu Inatsu
Masayuki Karasuyama
Keiichi Inoue
Ichiro Takeuchi
11
4
0
13 Sep 2019
Bayesian Optimization with Binary Auxiliary Information
Bayesian Optimization with Binary Auxiliary Information
Yehong Zhang
Zhongxiang Dai
K. H. Low
11
26
0
17 Jun 2019
Knowledge Gradient for Selection with Covariates: Consistency and
  Computation
Knowledge Gradient for Selection with Covariates: Consistency and Computation
Liang Ding
L. Hong
Haihui Shen
Xiaowei Zhang
BDL
8
27
0
12 Jun 2019
Lifelong Bayesian Optimization
Lifelong Bayesian Optimization
Yao Zhang
James Jordon
Ahmed Alaa
M. Schaar
26
11
0
29 May 2019
Bayesian Optimization for Policy Search via Online-Offline
  Experimentation
Bayesian Optimization for Policy Search via Online-Offline Experimentation
Benjamin Letham
E. Bakshy
OffRL
11
56
0
01 Apr 2019
Active Multi-Information Source Bayesian Quadrature
Active Multi-Information Source Bayesian Quadrature
A. Gessner
Javier I. González
Maren Mahsereci
17
30
0
27 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
14
109
0
18 Mar 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
W. Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric P. Xing
29
174
0
15 Mar 2019
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
Jian Wu
Saul Toscano-Palmerin
P. Frazier
A. Wilson
9
129
0
12 Mar 2019
Harnessing Low-Fidelity Data to Accelerate Bayesian Optimization via
  Posterior Regularization
Harnessing Low-Fidelity Data to Accelerate Bayesian Optimization via Posterior Regularization
B. Liu
UQCV
17
2
0
11 Feb 2019
Multi-fidelity Bayesian Optimization with Max-value Entropy Search and
  its parallelization
Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its parallelization
Shion Takeno
H. Fukuoka
Yuhki Tsukada
T. Koyama
M. Shiga
Ichiro Takeuchi
Masayuki Karasuyama
8
40
0
24 Jan 2019
Regret bounds for meta Bayesian optimization with an unknown Gaussian
  process prior
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
Zi Wang
Beomjoon Kim
L. Kaelbling
11
54
0
23 Nov 2018
Fast Hyperparameter Optimization of Deep Neural Networks via Ensembling Multiple Surrogates
Yang Li
Jiawei Jiang
Yingxia Shao
Bin Cui
AI4CE
11
0
0
06 Nov 2018
Noisy Blackbox Optimization with Multi-Fidelity Queries: A Tree Search
  Approach
Noisy Blackbox Optimization with Multi-Fidelity Queries: A Tree Search Approach
Rajat Sen
Kirthevasan Kandasamy
Sanjay Shakkottai
6
23
0
24 Oct 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
13
1,736
0
08 Jul 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
12
1,072
0
04 Jul 2018
Contour location via entropy reduction leveraging multiple information
  sources
Contour location via entropy reduction leveraging multiple information sources
A. Marques
Rémi R. Lam
Karen E. Willcox
9
32
0
19 May 2018
Bayesian Optimization with Expensive Integrands
Bayesian Optimization with Expensive Integrands
Saul Toscano-Palmerin
P. Frazier
11
49
0
23 Mar 2018
Discretization-free Knowledge Gradient Methods for Bayesian Optimization
Jian Wu
P. Frazier
BDL
11
9
0
20 Jul 2017
Experimental Design for Non-Parametric Correction of Misspecified
  Dynamical Models
Experimental Design for Non-Parametric Correction of Misspecified Dynamical Models
Gal Shulkind
L. Horesh
H. Avron
13
16
0
02 May 2017
Previous
123
Next