Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.06160
Cited By
Stochastic Variance Reduction for Nonconvex Optimization
19 March 2016
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variance Reduction for Nonconvex Optimization"
50 / 124 papers shown
Title
Learning to Reason under Off-Policy Guidance
Jianhao Yan
Yafu Li
Zican Hu
Zhi Wang
Ganqu Cui
Xiaoye Qu
Yu Cheng
Yue Zhang
OffRL
LRM
44
1
0
21 Apr 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
41
0
0
28 Jan 2025
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
Hao Di
Haishan Ye
Yueling Zhang
Xiangyu Chang
Guang Dai
Ivor W. Tsang
42
1
0
28 May 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
43
4
0
07 Feb 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
34
1
0
29 Jan 2024
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
Hari Dahal
Wei Liu
Yangyang Xu
49
5
0
15 Nov 2023
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
44
1
0
09 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
31
1
0
24 Oct 2023
Efficient preconditioned stochastic gradient descent for estimation in latent variable models
C. Baey
Maud Delattre
E. Kuhn
Jean-Benoist Léger
Sarah Lemler
23
4
0
22 Jun 2023
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Lijun Zhang
Haomin Bai
W. Tu
Ping Yang
Yao Hu
16
4
0
31 May 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
36
6
0
25 May 2023
An Adaptive Policy to Employ Sharpness-Aware Minimization
Weisen Jiang
Hansi Yang
Yu Zhang
James T. Kwok
AAML
83
32
0
28 Apr 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
44
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
38
14
0
09 Dec 2022
Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast Evasion of Non-Degenerate Saddle Points
Mayank Baranwal
Param Budhraja
V. Raj
A. Hota
33
2
0
07 Dec 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
28
11
0
24 Nov 2022
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Weijia Shao
F. Sivrikaya
S. Albayrak
21
0
0
21 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
29
15
0
03 Nov 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
34
2
0
17 Jul 2022
Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation
Pengfei Guo
Dong Yang
Ali Hatamizadeh
An Xu
Ziyue Xu
...
F. Patella
Elvira Stellato
G. Carrafiello
Vishal M. Patel
H. Roth
OOD
FedML
28
32
0
12 Mar 2022
Breaking the Linear Iteration Cost Barrier for Some Well-known Conditional Gradient Methods Using MaxIP Data-structures
Anshumali Shrivastava
Zhao Song
Zhaozhuo Xu
27
28
0
30 Nov 2021
Distributed Policy Gradient with Variance Reduction in Multi-Agent Reinforcement Learning
Xiaoxiao Zhao
Jinlong Lei
Li Li
Jie-bin Chen
OffRL
20
2
0
25 Nov 2021
AGGLIO: Global Optimization for Locally Convex Functions
Debojyoti Dey
B. Mukhoty
Purushottam Kar
16
2
0
06 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
43
1
0
25 Oct 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
32
48
0
24 Oct 2021
Variance Reduction based Experience Replay for Policy Optimization
Hua Zheng
Wei Xie
M. Feng
OffRL
41
2
0
17 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
Kaipeng Zhang
Tamer Bacsar
46
57
0
12 Oct 2021
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
35
19
0
04 Oct 2021
A Decentralized Federated Learning Framework via Committee Mechanism with Convergence Guarantee
Chunjiang Che
Xiaoli Li
Chuan Chen
Xiaoyu He
Zibin Zheng
FedML
46
73
0
01 Aug 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
26
0
25 Jun 2021
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
Xin Zhang
Jia Liu
Zhengyuan Zhu
Elizabeth S. Bentley
49
14
0
04 May 2021
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
54
210
0
23 Apr 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
48
14
0
21 Mar 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
17
7
0
12 Feb 2021
FedADC: Accelerated Federated Learning with Drift Control
Emre Ozfatura
Kerem Ozfatura
Deniz Gunduz
FedML
53
37
0
16 Dec 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
33
126
0
25 Aug 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
30
37
0
09 Jul 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
19
10
0
06 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
35
23
0
31 May 2020
Weighted Aggregating Stochastic Gradient Descent for Parallel Deep Learning
Pengzhan Guo
Zeyang Ye
Keli Xiao
Wei Zhu
24
14
0
07 Apr 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
V. Patel
21
23
0
01 Apr 2020
1
2
3
Next