ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.06277
  4. Cited By
Composing graphical models with neural networks for structured
  representations and fast inference

Composing graphical models with neural networks for structured representations and fast inference

20 March 2016
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
    BDL
    OCL
ArXivPDFHTML

Papers citing "Composing graphical models with neural networks for structured representations and fast inference"

50 / 96 papers shown
Title
Stability-based Generalization Bounds for Variational Inference
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
R. Khardon
BDL
49
0
0
17 Feb 2025
Diffusion Models for Inverse Problems in the Exponential Family
Alessandro Micheli
Mélodie Monod
Samir Bhatt
66
0
0
09 Feb 2025
SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer
SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer
Hongyu Chen
Zihan Wang
Xianrui Li
Xingchen Sun
Fangyi Chen
Jiang Liu
Jie Wang
Bhiksha Raj
Zicheng Liu
Emad Barsoum
VLM
114
7
0
14 Dec 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
31
2
0
29 Aug 2024
A Markov Random Field Multi-Modal Variational AutoEncoder
A Markov Random Field Multi-Modal Variational AutoEncoder
Fouad Oubari
M. Baha
Raphael Meunier
Rodrigue Décatoire
Mathilde Mougeot
36
0
0
18 Aug 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
The VampPrior Mixture Model
The VampPrior Mixture Model
Andrew Stirn
David A. Knowles
BDL
34
1
0
06 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
45
1
0
05 Jan 2024
Entropic Matching for Expectation Propagation of Markov Jump Processes
Entropic Matching for Expectation Propagation of Markov Jump Processes
Bastian Alt
Heinz Koeppl
Heinz Koeppl
34
1
0
27 Sep 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming Liu
Bryon Aragam
Liam Solus
CML
30
3
0
31 May 2023
Spectral learning of Bernoulli linear dynamical systems models
Spectral learning of Bernoulli linear dynamical systems models
Iris R. Stone
Yotam Sagiv
Il Memming Park
Jonathan W. Pillow
35
1
0
03 Mar 2023
Generative Causal Representation Learning for Out-of-Distribution Motion
  Forecasting
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODD
OOD
32
12
0
17 Feb 2023
Hub-VAE: Unsupervised Hub-based Regularization of Variational
  Autoencoders
Hub-VAE: Unsupervised Hub-based Regularization of Variational Autoencoders
Priya Mani
C. Domeniconi
BDL
SSL
DRL
26
1
0
18 Nov 2022
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
31
12
0
27 Oct 2022
Unsupervised representation learning with recognition-parametrised
  probabilistic models
Unsupervised representation learning with recognition-parametrised probabilistic models
William I. Walker
Hugo Soulat
Changmin Yu
M. Sahani
BDL
20
2
0
13 Sep 2022
Time Series Clustering with an EM algorithm for Mixtures of Linear
  Gaussian State Space Models
Time Series Clustering with an EM algorithm for Mixtures of Linear Gaussian State Space Models
Ryohei Umatani
Takashi Imai
K. Kawamoto
Shutaro Kunimasa
AI4TS
32
14
0
25 Aug 2022
Generalized Identifiability Bounds for Mixture Models with Grouped
  Samples
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
Robert A. Vandermeulen
René Saitenmacher
28
2
0
22 Jul 2022
Controllable Data Generation by Deep Learning: A Review
Controllable Data Generation by Deep Learning: A Review
Shiyu Wang
Yuanqi Du
Xiaojie Guo
Bo Pan
Zhaohui Qin
Liang Zhao
33
28
0
19 Jul 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
26
49
0
20 Jun 2022
Emergent Communication through Metropolis-Hastings Naming Game with Deep
  Generative Models
Emergent Communication through Metropolis-Hastings Naming Game with Deep Generative Models
T. Taniguchi
Yuto Yoshida
Akira Taniguchi
Y. Hagiwara
MLLM
27
22
0
24 May 2022
Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
19
3
0
18 May 2022
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with
  Application to Mispronunciations Localization
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with Application to Mispronunciations Localization
Wei Wei
Hengguan Huang
Xiangming Gu
Hao Wang
Ye Wang
BDL
27
0
0
05 May 2022
Energy networks for state estimation with random sensors using sparse
  labels
Energy networks for state estimation with random sensors using sparse labels
Y. Kumar
S. Chakraborty
29
0
0
12 Mar 2022
Deep Learning for Epidemiologists: An Introduction to Neural Networks
Deep Learning for Epidemiologists: An Introduction to Neural Networks
S. Serghiou
K. Rough
FedML
24
13
0
02 Feb 2022
Projected Sliced Wasserstein Autoencoder-based Hyperspectral Images Anomaly Detection
Yurong Chen
Hui Zhang
Yaonan Wang
Q. M. J. Wu
Yimin Yang
22
0
0
20 Dec 2021
Deep Explicit Duration Switching Models for Time Series
Deep Explicit Duration Switching Models for Time Series
Abdul Fatir Ansari
Konstantinos Benidis
Richard Kurle
Ali Caner Turkmen
Harold Soh
Alex Smola
Yuyang Wang
Tim Januschowski
BDL
18
19
0
26 Oct 2021
Introspective Robot Perception using Smoothed Predictions from Bayesian
  Neural Networks
Introspective Robot Perception using Smoothed Predictions from Bayesian Neural Networks
Jianxiang Feng
M. Durner
Zoltán-Csaba Márton
Ferenc Bálint-Benczédi
Rudolph Triebel
UQCV
BDL
13
11
0
27 Sep 2021
Online Unsupervised Learning of Visual Representations and Categories
Online Unsupervised Learning of Visual Representations and Categories
Mengye Ren
Tyler R. Scott
Michael L. Iuzzolino
Michael C. Mozer
R. Zemel
OCL
SSL
35
4
0
13 Sep 2021
Toward a `Standard Model' of Machine Learning
Toward a `Standard Model' of Machine Learning
Zhiting Hu
Eric Xing
37
12
0
17 Aug 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
A Deep Variational Approach to Clustering Survival Data
A Deep Variational Approach to Clustering Survival Data
Laura Manduchi
Ricards Marcinkevics
M. Massi
Thomas Weikert
Alexander Sauter
...
F. Vasella
M. Neidert
M. Pfister
Bram Stieltjes
Julia E. Vogt
27
29
0
10 Jun 2021
Lossless compression with state space models using bits back coding
Lossless compression with state space models using bits back coding
James Townsend
Iain R. Murray
23
8
0
18 Mar 2021
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
34
8
0
15 Dec 2020
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
37
39
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
26
25
0
26 Oct 2020
Sparse Gaussian Process Variational Autoencoders
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
29
33
0
20 Oct 2020
Flexible mean field variational inference using mixtures of
  non-overlapping exponential families
Flexible mean field variational inference using mixtures of non-overlapping exponential families
J. Spence
22
4
0
14 Oct 2020
Monotone operator equilibrium networks
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
32
130
0
15 Jun 2020
Dissimilarity Mixture Autoencoder for Deep Clustering
Dissimilarity Mixture Autoencoder for Deep Clustering
Juan S. Lara
Fabio A. González
22
5
0
15 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
33
229
0
11 Jun 2020
Variational Autoencoder with Embedded Student-$t$ Mixture Model for
  Authorship Attribution
Variational Autoencoder with Embedded Student-ttt Mixture Model for Authorship Attribution
Benedikt T. Boenninghoff
Steffen Zeiler
R. M. Nickel
D. Kolossa
BDL
DRL
27
2
0
28 May 2020
Robust Training of Vector Quantized Bottleneck Models
Robust Training of Vector Quantized Bottleneck Models
A. Lancucki
J. Chorowski
Guillaume Sanchez
R. Marxer
Nanxin Chen
Hans J. G. A. Dolfing
Sameer Khurana
Tanel Alumäe
Antoine Laurent
29
58
0
18 May 2020
Posterior Control of Blackbox Generation
Posterior Control of Blackbox Generation
Xiang Lisa Li
Alexander M. Rush
24
25
0
10 May 2020
Unsupervised Lesion Detection via Image Restoration with a Normative
  Prior
Unsupervised Lesion Detection via Image Restoration with a Normative Prior
Xiaoran Chen
Suhang You
K. Tezcan
E. Konukoglu
MedIm
27
135
0
30 Apr 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
40
120
0
26 Mar 2020
Neural Enhanced Belief Propagation on Factor Graphs
Neural Enhanced Belief Propagation on Factor Graphs
Victor Garcia Satorras
Max Welling
30
95
0
04 Mar 2020
Predictive Coding for Locally-Linear Control
Predictive Coding for Locally-Linear Control
Rui Shu
Tung D. Nguyen
Yinlam Chow
Tu Pham
Khoat Than
Mohammad Ghavamzadeh
Stefano Ermon
Hung Bui
OffRL
BDL
42
24
0
02 Mar 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
12
Next