ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.06277
  4. Cited By
Composing graphical models with neural networks for structured
  representations and fast inference

Composing graphical models with neural networks for structured representations and fast inference

20 March 2016
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
    BDL
    OCL
ArXivPDFHTML

Papers citing "Composing graphical models with neural networks for structured representations and fast inference"

46 / 96 papers shown
Title
Time2Graph: Revisiting Time Series Modeling with Dynamic Shapelets
Time2Graph: Revisiting Time Series Modeling with Dynamic Shapelets
Ziqiang Cheng
Yang Yang
Wei Wang
Wenjie Hu
Yueting Zhuang
Guojie Song
AI4TS
19
61
0
11 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,119
0
22 Oct 2019
Collapsed Amortized Variational Inference for Switching Nonlinear
  Dynamical Systems
Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems
Zhe Dong
Bryan Seybold
Kevin Patrick Murphy
Hung Bui
BDL
32
30
0
21 Oct 2019
Neuro-SERKET: Development of Integrative Cognitive System through the
  Composition of Deep Probabilistic Generative Models
Neuro-SERKET: Development of Integrative Cognitive System through the Composition of Deep Probabilistic Generative Models
T. Taniguchi
Tomoaki Nakamura
Masahiro Suzuki
Ryo Kuniyasu
Kaede Hayashi
Akira Taniguchi
Takato Horii
Takayuki Nagai
BDL
DRL
27
48
0
20 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
11
6
0
07 Oct 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
34
54
0
27 Sep 2019
An Unsupervised Bayesian Neural Network for Truth Discovery in Social
  Networks
An Unsupervised Bayesian Neural Network for Truth Discovery in Social Networks
Jielong Yang
Wee Peng Tay
BDL
21
8
0
25 Jun 2019
Recurrent Neural Processes
Recurrent Neural Processes
Timon Willi
Jonathan Masci
Jürgen Schmidhuber
Christian Osendorfer
BDL
18
18
0
13 Jun 2019
Correlated Variational Auto-Encoders
Correlated Variational Auto-Encoders
Da Tang
Dawen Liang
Tony Jebara
Nicholas Ruozzi
CML
GNN
24
21
0
14 May 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
22
45
0
18 Mar 2019
Using Causal Analysis to Learn Specifications from Task Demonstrations
Using Causal Analysis to Learn Specifications from Task Demonstrations
Daniel Angelov
Yordan V. Hristov
S. Ramamoorthy
CML
26
19
0
04 Mar 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
Practical Lossless Compression with Latent Variables using Bits Back
  Coding
Practical Lossless Compression with Latent Variables using Bits Back Coding
James Townsend
Thomas Bird
David Barber
DRL
16
138
0
15 Jan 2019
A General Method for Amortizing Variational Filtering
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
Semi-crowdsourced Clustering with Deep Generative Models
Semi-crowdsourced Clustering with Deep Generative Models
Yucen Luo
Tian Tian
Jiaxin Shi
Jun Zhu
Bo Zhang
20
18
0
29 Oct 2018
The LORACs prior for VAEs: Letting the Trees Speak for the Data
The LORACs prior for VAEs: Letting the Trees Speak for the Data
Sharad Vikram
Matthew D. Hoffman
Matthew J. Johnson
CML
BDL
19
15
0
16 Oct 2018
SOLAR: Deep Structured Representations for Model-Based Reinforcement
  Learning
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
OffRL
23
41
0
28 Aug 2018
Unsupervised Word Segmentation from Speech with Attention
Unsupervised Word Segmentation from Speech with Attention
Pierre Godard
Marcely Zanon Boito
Lucas Ondel
Alexandre Berard
François Yvon
Aline Villavicencio
Laurent Besacier
18
27
0
18 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
176
666
0
07 Jun 2018
Approximate Bayesian inference in spatial environments
Approximate Bayesian inference in spatial environments
Atanas Mirchev
Baris Kayalibay
Maximilian Soelch
Patrick van der Smagt
Justin Bayer
BDL
16
22
0
18 May 2018
Structured Disentangled Representations
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
OOD
CML
BDL
DRL
33
165
0
06 Apr 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
25
85
0
24 Mar 2018
Probabilistic Video Generation using Holistic Attribute Control
Probabilistic Video Generation using Holistic Attribute Control
Jiawei He
Andreas M. Lehrmann
Joseph Marino
Greg Mori
Leonid Sigal
VGen
DiffM
DRL
22
77
0
21 Mar 2018
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Eric Zhan
Stephan Zheng
Yisong Yue
Long Sha
P. Lucey
25
88
0
20 Mar 2018
Variational Message Passing with Structured Inference Networks
Variational Message Passing with Structured Inference Networks
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
BDL
31
54
0
15 Mar 2018
Bayesian Models for Unit Discovery on a Very Low Resource Language
Bayesian Models for Unit Discovery on a Very Low Resource Language
Lucas Ondel
Pierre Godard
Laurent Besacier
Elin Larsen
M. Hasegawa-Johnson
O. Scharenborg
Emmanuel Dupoux
L. Burget
François Yvon
Sanjeev Khudanpur
26
18
0
16 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Transformation Autoregressive Networks
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric Xing
J. Schneider
OOD
28
86
0
30 Jan 2018
Symbol Emergence in Cognitive Developmental Systems: a Survey
Symbol Emergence in Cognitive Developmental Systems: a Survey
T. Taniguchi
Emre Ugur
Matej Hoffmann
L. Jamone
Takayuki Nagai
...
Toshihiko Matsuka
N. Iwahashi
Erhan Öztop
J. Piater
F. Worgotter
28
90
0
26 Jan 2018
Deep generative models of genetic variation capture mutation effects
Deep generative models of genetic variation capture mutation effects
Adam J. Riesselman
John Ingraham
D. Marks
DRL
BDL
21
23
0
18 Dec 2017
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
46
346
0
28 Nov 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRL
GAN
41
127
0
02 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
30
359
0
01 Jun 2017
Contextual Explanation Networks
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
37
82
0
29 May 2017
Stochastic Sequential Neural Networks with Structured Inference
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
23
3
0
24 May 2017
Pixel Deconvolutional Networks
Pixel Deconvolutional Networks
Hongyang Gao
Hao Yuan
Zhengyang Wang
Shuiwang Ji
SSeg
19
46
0
18 May 2017
Multimodal Prediction and Personalization of Photo Edits with Deep
  Generative Models
Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models
A. Saeedi
Matthew D. Hoffman
S. DiVerdi
Asma Ghandeharioun
Matthew J. Johnson
Ryan P. Adams
DiffM
29
9
0
17 Apr 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
24
946
0
01 Mar 2017
Deep Quantization: Encoding Convolutional Activations with Deep
  Generative Model
Deep Quantization: Encoding Convolutional Activations with Deep Generative Model
Zhaofan Qiu
Ting Yao
Tao Mei
DRL
MQ
32
59
0
29 Nov 2016
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
16
300
0
31 Oct 2016
Recurrent switching linear dynamical systems
Recurrent switching linear dynamical systems
Scott W. Linderman
Andrew C. Miller
Ryan P. Adams
David M. Blei
Liam Paninski
Matthew J. Johnson
36
69
0
26 Oct 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
22
452
0
30 Sep 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
24
155
0
26 May 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
75
2,751
0
20 Feb 2015
Previous
12