ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08754
  4. Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning

Faster Eigenvector Computation via Shift-and-Invert Preconditioning

26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
ArXiv (abs)PDFHTML

Papers citing "Faster Eigenvector Computation via Shift-and-Invert Preconditioning"

50 / 2,354 papers shown
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
442
164
0
14 Aug 2019
Random Sum-Product Forests with Residual Links
Random Sum-Product Forests with Residual Links
Fabrizio G. Ventola
Karl Stelzner
Alejandro Molina
Kristian Kersting
TPM
68
2
0
08 Aug 2019
Continuous Graph Flow
Continuous Graph Flow
Zhiwei Deng
Megha Nawhal
Lili Meng
Greg Mori
202
3
0
07 Aug 2019
Likelihood Contribution based Multi-scale Architecture for Generative
  Flows
Likelihood Contribution based Multi-scale Architecture for Generative Flows
Hari Prasanna Das
Pieter Abbeel
C. Spanos
DRLAI4CE
160
5
0
05 Aug 2019
Learning Densities in Feature Space for Reliable Segmentation of Indoor
  Scenes
Learning Densities in Feature Space for Reliable Segmentation of Indoor ScenesIEEE Robotics and Automation Letters (RA-L), 2019
Nicolas Marchal
Charlotte Moraldo
Roland Siegwart
Hermann Blum
Cesar Cadena
Abel Gawel
285
20
0
01 Aug 2019
On Mutual Information Maximization for Representation Learning
On Mutual Information Maximization for Representation LearningInternational Conference on Learning Representations (ICLR), 2019
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
429
538
0
31 Jul 2019
Neural Network based Explicit Mixture Models and
  Expectation-maximization based Learning
Neural Network based Explicit Mixture Models and Expectation-maximization based LearningIEEE International Joint Conference on Neural Network (IJCNN), 2019
Dong Liu
Minh Thành Vu
Saikat Chatterjee
L. Rasmussen
195
3
0
31 Jul 2019
Deep Generative Quantile-Copula Models for Probabilistic Forecasting
Deep Generative Quantile-Copula Models for Probabilistic Forecasting
Ruofeng Wen
Kari Torkkola
AI4TS
141
35
0
24 Jul 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physicsComputing and Software for Big Science (CSBS), 2019
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
259
130
0
24 Jul 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
260
11
0
24 Jul 2019
Noise Regularization for Conditional Density Estimation
Noise Regularization for Conditional Density Estimation
Jonas Rothfuss
Fabio Ferreira
S. Boehm
Simon Walther
Maxim Ulrich
Tamim Asfour
Andreas Krause
169
36
0
21 Jul 2019
Surfing: Iterative optimization over incrementally trained deep networks
Surfing: Iterative optimization over incrementally trained deep networksNeural Information Processing Systems (NeurIPS), 2019
Ganlin Song
Z. Fan
John D. Lafferty
159
20
0
19 Jul 2019
MintNet: Building Invertible Neural Networks with Masked Convolutions
MintNet: Building Invertible Neural Networks with Masked ConvolutionsNeural Information Processing Systems (NeurIPS), 2019
Yang Song
Chenlin Meng
Stefano Ermon
151
70
0
18 Jul 2019
Deep Invertible Networks for EEG-based brain-signal decoding
Deep Invertible Networks for EEG-based brain-signal decoding
R. Schirrmeister
T. Ball
77
0
0
17 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep LearningConference on Uncertainty in Artificial Intelligence (UAI), 2019
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
260
155
0
17 Jul 2019
A Linear Systems Theory of Normalizing Flows
A Linear Systems Theory of Normalizing Flows
Reuben Feinman
Nikhil Parthasarathy
106
1
0
15 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Trust-Region Variational Inference with Gaussian Mixture ModelsJournal of machine learning research (JMLR), 2019
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
178
26
0
10 Jul 2019
Tails of Lipschitz Triangular Flows
Tails of Lipschitz Triangular Flows
P. Jaini
I. Kobyzev
Yaoliang Yu
Marcus A. Brubaker
194
5
0
10 Jul 2019
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Magnus Wiese
R. Knobloch
R. Korn
DRL
153
21
0
07 Jul 2019
Guided Image Generation with Conditional Invertible Neural Networks
Guided Image Generation with Conditional Invertible Neural Networks
Lynton Ardizzone
Carsten T. Lüth
Jakob Kruse
Carsten Rother
Ullrich Kothe
DRL
351
329
0
04 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing FlowsIEEE International Conference on Computer Vision (ICCV), 2019
Guandao Yang
Xun Huang
Jinwei Gu
Ming-Yuan Liu
Serge J. Belongie
Bharath Hariharan
3DPC
495
752
0
28 Jun 2019
Learning Policies through Quantile Regression
Learning Policies through Quantile Regression
Oliver Richter
Roger Wattenhofer
181
0
0
27 Jun 2019
Curriculum Learning for Deep Generative Models with Clustering
Curriculum Learning for Deep Generative Models with Clustering
Deli Zhao
Jiapeng Zhu
Zhenfang Guo
Bo Zhang
GNN
174
3
0
27 Jun 2019
Perceptual Generative Autoencoders
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRLGAN
171
31
0
25 Jun 2019
Shaping Belief States with Generative Environment Models for RL
Shaping Belief States with Generative Environment Models for RLNeural Information Processing Systems (NeurIPS), 2019
Karol Gregor
Danilo Jimenez Rezende
F. Besse
Yan Wu
Hamza Merzic
Aaron van den Oord
OffRLAI4CE
404
121
0
21 Jun 2019
Black-Box Inference for Non-Linear Latent Force Models
Black-Box Inference for Non-Linear Latent Force ModelsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
W. Ward
Tom Ryder
D. Prangle
Mauricio A. Alvarez
DRL
209
14
0
21 Jun 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in AtariNeural Information Processing Systems (NeurIPS), 2019
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
511
269
0
19 Jun 2019
Disentangled Inference for GANs with Latently Invertible Autoencoder
Disentangled Inference for GANs with Latently Invertible AutoencoderInternational Journal of Computer Vision (IJCV), 2019
Jiapeng Zhu
Deli Zhao
Bo Zhang
Bolei Zhou
GANDRL
251
39
0
19 Jun 2019
Reweighted Expectation Maximization
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLMDRL
168
17
0
13 Jun 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep
  Auto-Regressive Networks
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive NetworksJournal of Computational Physics (JCP), 2019
N. Geneva
N. Zabaras
AI4CE
356
310
0
13 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
134
43
0
11 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker FlowInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
142
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline FlowsNeural Information Processing Systems (NeurIPS), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
988
892
0
10 Jun 2019
Convolutional Bipartite Attractor Networks
Convolutional Bipartite Attractor Networks
Michael L. Iuzzolino
Y. Singer
Michael C. Mozer
235
8
0
08 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using
  Typicality
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
182
86
0
07 Jun 2019
Improving Exploration in Soft-Actor-Critic with Normalizing Flows
  Policies
Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies
Patrick Nadeem Ward
Ariella Smofsky
A. Bose
146
61
0
06 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative ModelingNeural Information Processing Systems (NeurIPS), 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDLTPMDRL
537
418
0
06 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
729
2,762
0
06 Jun 2019
Image Synthesis with a Single (Robust) Classifier
Image Synthesis with a Single (Robust) ClassifierNeural Information Processing Systems (NeurIPS), 2019
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Madry
AAML
152
36
0
06 Jun 2019
Cubic-Spline Flows
Cubic-Spline FlowsInternational Conference on Machine Learning (ICML), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
176
62
0
05 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
151
14
0
04 Jun 2019
Understanding the Limitations of Conditional Generative Models
Understanding the Limitations of Conditional Generative ModelsInternational Conference on Learning Representations (ICLR), 2019
Ethan Fetaya
J. Jacobsen
Will Grathwohl
R. Zemel
282
62
0
04 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Aleksander Madry
OODAAML
229
63
0
03 Jun 2019
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio
  voice conversion
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversionNeural Information Processing Systems (NeurIPS), 2019
Joan Serrà
Santiago Pascual
Carlos Segura
CVBM
182
90
0
03 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2Neural Information Processing Systems (NeurIPS), 2019
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
581
2,134
0
02 Jun 2019
Greedy inference with structure-exploiting lazy maps
Greedy inference with structure-exploiting lazy maps
Michael C. Brennan
Daniele Bigoni
O. Zahm
Alessio Spantini
Youssef Marzouk
347
13
0
31 May 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
158
17
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative FlowsAAAI Conference on Artificial Intelligence (AAAI), 2019
You Lu
Bert Huang
BDLDRL
183
80
0
30 May 2019
Graph Normalizing Flows
Graph Normalizing FlowsNeural Information Processing Systems (NeurIPS), 2019
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDLGNNAI4CE
209
175
0
30 May 2019
Neural Entropic Estimation: A faster path to mutual information
  estimation
Neural Entropic Estimation: A faster path to mutual information estimation
Chung Chan
Ali Al-Bashabsheh
Hingpang Huang
Michael Lim
D. Tam
Chao Zhao
132
25
0
30 May 2019
Previous
123...414243...464748
Next