ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00709
  4. Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
    GAN
ArXivPDFHTML

Papers citing "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"

35 / 35 papers shown
Title
Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning
Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning
Hao Sun
M. Schaar
105
16
0
28 Jan 2025
Nested Annealed Training Scheme for Generative Adversarial Networks
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
77
0
0
20 Jan 2025
Enhancing Graph Self-Supervised Learning with Graph Interplay
Enhancing Graph Self-Supervised Learning with Graph Interplay
Xinjian Zhao
Wei Pang
Xiangru Jian
Yaoyao Xu
Chaolong Ying
Tianshu Yu
116
0
0
17 Jan 2025
$f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization
fff-PO: Generalizing Preference Optimization with fff-divergence Minimization
Jiaqi Han
Mingjian Jiang
Yuxuan Song
J. Leskovec
Stefano Ermon
71
5
0
29 Oct 2024
Bounds on Lp errors in density ratio estimation via f-divergence loss functions
Bounds on Lp errors in density ratio estimation via f-divergence loss functions
Yoshiaki Kitazawa
57
0
0
02 Oct 2024
HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts
HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts
Hongjun Wang
S. Vaze
Kai Han
107
4
0
08 Aug 2024
MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
Baoren Xiao
Hao Ni
Weixin Yang
GAN
88
0
0
27 May 2024
Contrastive Multi-View Representation Learning on Graphs
Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani
Amir Hosein Khas Ahmadi
SSL
180
1,284
0
10 Jun 2020
Conditional Mutual Information Neural Estimator
Conditional Mutual Information Neural Estimator
Sina Molavipour
Germán Bassi
Mikael Skoglund
43
14
0
06 Nov 2019
From optimal transport to generative modeling: the VEGAN cookbook
From optimal transport to generative modeling: the VEGAN cookbook
Olivier Bousquet
Sylvain Gelly
Ilya O. Tolstikhin
Carl-Johann Simon-Gabriel
B. Schoelkopf
OT
39
147
0
22 May 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
131
4,817
0
26 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
82
528
0
17 Jan 2017
NIPS 2016 Tutorial: Generative Adversarial Networks
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
GAN
83
1,721
0
31 Dec 2016
Amortised MAP Inference for Image Super-resolution
Amortised MAP Inference for Image Super-resolution
C. Sønderby
Jose Caballero
Lucas Theis
Wenzhe Shi
Ferenc Huszár
68
435
0
14 Oct 2016
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Masatoshi Uehara
Issei Sato
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
GAN
58
104
0
10 Oct 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
353
8,999
0
10 Jun 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
194
5,502
0
23 Nov 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
226
13,968
0
19 Nov 2015
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
63
2,224
0
18 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
43
296
0
16 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
61
1,139
0
05 Nov 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning
  with Humans in the Loop
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
Feng Yu
Ari Seff
Yinda Zhang
Shuran Song
Thomas Funkhouser
Jianxiong Xiao
37
2,320
0
10 Jun 2015
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
66
528
0
14 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
173
6,780
0
12 Mar 2015
Generative Moment Matching Networks
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
86
844
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
673
149,474
0
22 Dec 2014
On distinguishability criteria for estimating generative models
On distinguishability criteria for estimating generative models
Ian Goodfellow
GAN
35
138
0
19 Dec 2014
Identifying and attacking the saddle point problem in high-dimensional
  non-convex optimization
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
95
1,379
0
10 Jun 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
95
727
0
31 Jan 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
344
16,972
0
20 Dec 2013
Generating Sequences With Recurrent Neural Networks
Generating Sequences With Recurrent Neural Networks
Alex Graves
GAN
97
4,025
0
04 Aug 2013
RNADE: The real-valued neural autoregressive density-estimator
RNADE: The real-valued neural autoregressive density-estimator
Benigno Uria
Iain Murray
Hugo Larochelle
74
237
0
02 Jun 2013
Hilbert space embeddings and metrics on probability measures
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
147
741
0
30 Jul 2009
Information, Divergence and Risk for Binary Experiments
Information, Divergence and Risk for Binary Experiments
Mark D. Reid
Robert C. Williamson
79
231
0
05 Jan 2009
Estimating divergence functionals and the likelihood ratio by convex
  risk minimization
Estimating divergence functionals and the likelihood ratio by convex risk minimization
X. Nguyen
Martin J. Wainwright
Michael I. Jordan
141
799
0
04 Sep 2008
1