ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04934
  4. Cited By
Improving Variational Inference with Inverse Autoregressive Flow

Improving Variational Inference with Inverse Autoregressive Flow

15 June 2016
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
    BDL
    DRL
ArXivPDFHTML

Papers citing "Improving Variational Inference with Inverse Autoregressive Flow"

50 / 308 papers shown
Title
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
22
39
0
12 Feb 2020
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
  Dynamics
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics
Alexander Tong
Jessie Huang
Guy Wolf
David van Dijk
Smita Krishnaswamy
16
158
0
09 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
41
425
0
26 Jan 2020
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
18
57
0
10 Jan 2020
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable
  Models
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
James Townsend
Thomas Bird
Julius Kunze
David Barber
BDL
VLM
13
56
0
20 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
27
29
0
19 Dec 2019
Learning Multi-layer Latent Variable Model via Variational Optimization
  of Short Run MCMC for Approximate Inference
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song-Chun Zhu
Ying Nian Wu
BDL
DRL
19
2
0
04 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
16
14
0
05 Nov 2019
On Investigation of Unsupervised Speech Factorization Based on
  Normalization Flow
On Investigation of Unsupervised Speech Factorization Based on Normalization Flow
Haoran Sun
Yunqi Cai
Lantian Li
Dong Wang
14
1
0
29 Oct 2019
Transferring neural speech waveform synthesizers to musical instrument
  sounds generation
Transferring neural speech waveform synthesizers to musical instrument sounds generation
Yi Zhao
Xin Wang
Lauri Juvela
Junichi Yamagishi
16
16
0
27 Oct 2019
MAVEN: Multi-Agent Variational Exploration
MAVEN: Multi-Agent Variational Exploration
Anuj Mahajan
Tabish Rashid
Mikayel Samvelyan
Shimon Whiteson
DRL
133
355
0
16 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum
  Assignment Problems
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
17
15
0
12 Oct 2019
FIS-GAN: GAN with Flow-based Importance Sampling
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
22
3
0
06 Oct 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
28
0
0
04 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
16
6
0
02 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
  Flows
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
17
2
0
30 Sep 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
11
214
0
30 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
13
15
0
09 Sep 2019
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
Bohan Li
Junxian He
Graham Neubig
Taylor Berg-Kirkpatrick
Yiming Yang
DRL
11
70
0
02 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
19
33
0
26 Aug 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDL
DRL
AI4TS
13
83
0
24 Aug 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
22
92
0
20 Aug 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
G. Loaiza-Ganem
John P. Cunningham
DRL
15
83
0
16 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Zekun Hao
Ming-Yu Liu
Serge J. Belongie
Bharath Hariharan
3DPC
13
654
0
28 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
16
14
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDL
DRL
11
72
0
30 May 2019
Revision in Continuous Space: Unsupervised Text Style Transfer without
  Adversarial Learning
Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial Learning
Dayiheng Liu
Jie Fu
Yidan Zhang
C. Pal
Jiancheng Lv
DRL
31
48
0
29 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
29
14
0
27 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
19
114
0
24 May 2019
Non-Autoregressive Neural Text-to-Speech
Non-Autoregressive Neural Text-to-Speech
Kainan Peng
Wei Ping
Z. Song
Kexin Zhao
27
39
0
21 May 2019
Correlated Variational Auto-Encoders
Correlated Variational Auto-Encoders
Da Tang
Dawen Liang
Tony Jebara
Nicholas Ruozzi
CML
GNN
16
21
0
14 May 2019
Improved Conditional VRNNs for Video Prediction
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGen
DRL
18
161
0
27 Apr 2019
Neural source-filter waveform models for statistical parametric speech
  synthesis
Neural source-filter waveform models for statistical parametric speech synthesis
Xin Wang
Shinji Takaki
Junichi Yamagishi
24
117
0
27 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
19
27
0
17 Apr 2019
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic
  Grasping
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic Grasping
Mengyuan Yan
A. Li
Mrinal Kalakrishnan
P. Pastor
11
18
0
15 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
14
17
0
15 Apr 2019
Probability density distillation with generative adversarial networks
  for high-quality parallel waveform generation
Probability density distillation with generative adversarial networks for high-quality parallel waveform generation
Ryuichi Yamamoto
Eunwoo Song
Jae-Min Kim
11
55
0
09 Apr 2019
A Learned Representation for Scalable Vector Graphics
A Learned Representation for Scalable Vector Graphics
Raphael Gontijo-Lopes
David R Ha
Douglas Eck
Jonathon Shlens
GAN
OCL
30
113
0
04 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
22
69
0
30 Mar 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
17
269
0
29 Mar 2019
Wasserstein Dependency Measure for Representation Learning
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSL
DRL
22
115
0
28 Mar 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
27
103
0
09 Mar 2019
VideoFlow: A Conditional Flow-Based Model for Stochastic Video
  Generation
VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar
Mohammad Babaeizadeh
D. Erhan
Chelsea Finn
Sergey Levine
Laurent Dinh
Durk Kingma
VGen
25
131
0
04 Mar 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
19
36
0
24 Jan 2019
A bi-partite generative model framework for analyzing and simulating
  large scale multiple discrete-continuous travel behaviour data
A bi-partite generative model framework for analyzing and simulating large scale multiple discrete-continuous travel behaviour data
Melvin Wong
Bilal Farooq
9
24
0
18 Jan 2019
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDL
DRL
8
272
0
16 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
21
55
0
15 Jan 2019
Generative Adversarial Network based Speaker Adaptation for High
  Fidelity WaveNet Vocoder
Generative Adversarial Network based Speaker Adaptation for High Fidelity WaveNet Vocoder
Qiao Tian
Bing Yang
Shan Liu
GAN
16
9
0
06 Dec 2018
Previous
1234567
Next