ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04934
  4. Cited By
Improving Variational Inference with Inverse Autoregressive Flow

Improving Variational Inference with Inverse Autoregressive Flow

15 June 2016
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
    BDL
    DRL
ArXivPDFHTML

Papers citing "Improving Variational Inference with Inverse Autoregressive Flow"

50 / 308 papers shown
Title
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
22
50
0
20 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
11
7
0
12 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structures
Zichao Yan
William L. Hamilton
Mathieu Blanchette
32
2
0
01 Feb 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
15
241
0
09 Jan 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
21
1
0
24 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
112
95
0
10 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
24
14
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
31
336
0
20 Nov 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
18
9
0
26 Oct 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
17
121
0
24 Oct 2020
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR
  Parsing
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR Parsing
Chunchuan Lyu
Shay B. Cohen
Ivan Titov
24
11
0
23 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
75
3
0
22 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
104
46
0
19 Oct 2020
Dirichlet Graph Variational Autoencoder
Dirichlet Graph Variational Autoencoder
Jia Li
Tomas Yu
Jiajin Li
Honglei Zhang
Kangfei Zhao
Yu Rong
Hong Cheng
Junzhou Huang
BDL
11
52
0
09 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
21
12
0
07 Oct 2020
Variational Disentanglement for Rare Event Modeling
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
24
6
0
17 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
AUTO3D: Novel view synthesis through unsupervisely learned variational
  viewpoint and global 3D representation
AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation
Xiaofeng Liu
Tong Che
Yiqun Lu
Chao Yang
Site Li
J. You
3DV
41
21
0
13 Jul 2020
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model
  with Pitch-dependent Dilated Convolution Neural Network
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model with Pitch-dependent Dilated Convolution Neural Network
Yi-Chiao Wu
Tomoki Hayashi
Patrick Lumban Tobing
Kazuhiro Kobayashi
T. Toda
11
18
0
11 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
19
19
0
10 Jul 2020
Learning Sparse Prototypes for Text Generation
Learning Sparse Prototypes for Text Generation
Junxian He
Taylor Berg-Kirkpatrick
Graham Neubig
19
23
0
29 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
10
22
0
26 Jun 2020
Learning Physical Graph Representations from Visual Scenes
Learning Physical Graph Representations from Visual Scenes
Daniel M. Bear
Chaofei Fan
Damian Mrowca
Yunzhu Li
S. Alter
...
Jeremy Schwartz
Li Fei-Fei
Jiajun Wu
J. Tenenbaum
Daniel L. K. Yamins
SSL
GNN
SSeg
AI4CE
39
79
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,915
0
19 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
13
43
0
17 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
16
92
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
17
169
0
16 Jun 2020
A Variational Approach to Privacy and Fairness
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
14
25
0
11 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
20
23
0
10 Jun 2020
Deep generative models for musical audio synthesis
Deep generative models for musical audio synthesis
M. Huzaifah
L. Wyse
19
20
0
10 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
16
32
0
09 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
17
28
0
02 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate
  Distributional Regression
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
30
39
0
29 May 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
26
8
0
28 May 2020
Flowtron: an Autoregressive Flow-based Generative Network for
  Text-to-Speech Synthesis
Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
Rafael Valle
Kevin J. Shih
R. Prenger
Bryan Catanzaro
8
119
0
12 May 2020
Invertible Image Rescaling
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
17
234
0
12 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
25
7
0
12 May 2020
Multi-band MelGAN: Faster Waveform Generation for High-Quality
  Text-to-Speech
Multi-band MelGAN: Faster Waveform Generation for High-Quality Text-to-Speech
Geng Yang
Shan Yang
Kai-Chun Liu
Peng Fang
Wei-Neng Chen
Lei Xie
42
198
0
11 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
29
61
0
27 Apr 2020
PatchVAE: Learning Local Latent Codes for Recognition
PatchVAE: Learning Local Latent Codes for Recognition
Kamal Gupta
Saurabh Singh
Abhinav Shrivastava
SSL
DRL
14
20
0
07 Apr 2020
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li
Xiang Gao
Yuan Li
Baolin Peng
Xiujun Li
Yizhe Zhang
Jianfeng Gao
SSL
DRL
30
181
0
05 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
6
6
0
28 Mar 2020
FormulaZero: Distributionally Robust Online Adaptation via Offline
  Population Synthesis
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha
Matthew O'Kelly
Hongrui Zheng
Rahul Mangharam
John C. Duchi
Russ Tedrake
OffRL
66
26
0
09 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
11
0
0
07 Mar 2020
Diverse and Admissible Trajectory Forecasting through Multimodal Context
  Understanding
Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding
Seonguk Park
Gyubok Lee
Manoj Bhat
Jimin Seo
Minseok Kang
Jonathan M Francis
Ashwin R. Jadhav
Paul Pu Liang
Louis-Philippe Morency
136
119
0
06 Mar 2020
Gravitational-wave parameter estimation with autoregressive neural
  network flows
Gravitational-wave parameter estimation with autoregressive neural network flows
Stephen R. Green
C. Simpson
J. Gair
BDL
83
87
0
18 Feb 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
22
94
0
18 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
24
87
0
17 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
58
48
0
12 Feb 2020
Previous
1234567
Next