ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.01231
  4. Cited By
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
v1v2v3v4 (latest)

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

SIAM Journal on Optimization (SIAM J. Optim.), 2016
5 July 2016
Tianlin Li
Shiqian Ma
Shiqian Ma
Wen Liu
ArXiv (abs)PDFHTML

Papers citing "Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization"

17 / 67 papers shown
Implementation of Stochastic Quasi-Newton's Method in PyTorch
Implementation of Stochastic Quasi-Newton's Method in PyTorch
Yingkai Li
Huidong Liu
ODL
90
11
0
07 May 2018
Revisiting Skip-Gram Negative Sampling Model with Rectification
Revisiting Skip-Gram Negative Sampling Model with Rectification
Cun Mu
Guang Yang
Zheng Yan
118
13
0
01 Apr 2018
A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex
  Optimization
A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization
Andre Milzarek
X. Xiao
Shicong Cen
Zaiwen Wen
M. Ulbrich
162
37
0
09 Mar 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale
  problems
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
130
9
0
12 Feb 2018
Statistical Inference for the Population Landscape via Moment Adjusted
  Stochastic Gradients
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
137
21
0
20 Dec 2017
Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural
  Networks
Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan
Ying Xiao
Rif A. Saurous
ODL
162
20
0
08 Dec 2017
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
SGDLibrary: A MATLAB library for stochastic gradient descent algorithms
Hiroyuki Kasai
101
3
0
27 Oct 2017
Stochastic Conjugate Gradient Algorithm with Variance Reduction
Stochastic Conjugate Gradient Algorithm with Variance ReductionIEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2017
Xiaobo Jin
Xu-Yao Zhang
Kaizhu Huang
Guanggang Geng
124
57
0
27 Oct 2017
Fast online low-rank tensor subspace tracking by CP decomposition using
  recursive least squares from incomplete observations
Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
Hiroyuki Kasai
128
31
0
29 Sep 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAMLODL
221
47
0
26 Jul 2017
Dynamic Stochastic Approximation for Multi-stage Stochastic Optimization
Dynamic Stochastic Approximation for Multi-stage Stochastic Optimization
Guanghui Lan
Zhiqiang Zhou
99
13
0
11 Jul 2017
Improved Optimization of Finite Sums with Minibatch Stochastic Variance
  Reduced Proximal Iterations
Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations
Jialei Wang
Tong Zhang
251
12
0
21 Jun 2017
Training L1-Regularized Models with Orthant-Wise Passive Descent
  Algorithms
Training L1-Regularized Models with Orthant-Wise Passive Descent Algorithms
Jianqiao Wangni
182
1
0
26 Apr 2017
Riemannian stochastic quasi-Newton algorithm with variance reduction and
  its convergence analysis
Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
Hiroyuki Kasai
Hiroyuki Sato
Bamdev Mishra
183
22
0
15 Mar 2017
adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs
adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs
N. Keskar
A. Berahas
ODL
289
36
0
04 Nov 2015
HAMSI: A Parallel Incremental Optimization Algorithm Using Quadratic
  Approximations for Solving Partially Separable Problems
HAMSI: A Parallel Incremental Optimization Algorithm Using Quadratic Approximations for Solving Partially Separable Problems
K. Kaya
Figen Oztoprak
cS. .Ilker Birbil
A. Cemgil
Umut cSimcsekli
Nurdan Kuru
Hazal Koptagel
M. Ozturk
266
0
0
05 Sep 2015
A Linearly-Convergent Stochastic L-BFGS Algorithm
A Linearly-Convergent Stochastic L-BFGS AlgorithmInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2015
Philipp Moritz
Robert Nishihara
Sai Li
ODL
210
251
0
09 Aug 2015
Previous
12