ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.01231
  4. Cited By
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
v1v2v3v4 (latest)

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

SIAM Journal on Optimization (SIAM J. Optim.), 2016
5 July 2016
Tianlin Li
Shiqian Ma
Shiqian Ma
Wen Liu
ArXiv (abs)PDFHTML

Papers citing "Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization"

50 / 67 papers shown
Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization
Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization
Aditya Ranganath
Mukesh Singhal
Roummel Marcia
ODL
184
0
0
17 Feb 2025
Physics-Informed Neural Networks with Trust-Region Sequential Quadratic
  Programming
Physics-Informed Neural Networks with Trust-Region Sequential Quadratic Programming
Xiaoran Cheng
Sen Na
PINN
209
1
0
16 Sep 2024
A Stochastic Quasi-Newton Method for Non-convex Optimization with
  Non-uniform Smoothness
A Stochastic Quasi-Newton Method for Non-convex Optimization with Non-uniform SmoothnessIEEE Conference on Decision and Control (CDC), 2024
Zhenyu Sun
Ermin Wei
319
1
0
22 Mar 2024
Incremental Quasi-Newton Methods with Faster Superlinear Convergence
  Rates
Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
Zhuanghua Liu
Luo Luo
K. H. Low
262
3
0
04 Feb 2024
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu
Xiao Li
Andre Milzarek
598
3
0
02 Dec 2023
Jorge: Approximate Preconditioning for GPU-efficient Second-order
  Optimization
Jorge: Approximate Preconditioning for GPU-efficient Second-order Optimization
Siddharth Singh
Zack Sating
A. Bhatele
ODL
195
0
0
18 Oct 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Provably Convergent Plug-and-Play Quasi-Newton MethodsSIAM Journal of Imaging Sciences (JSIS), 2023
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
312
27
0
09 Mar 2023
Stochastic Approximation Beyond Gradient for Signal Processing and
  Machine Learning
Stochastic Approximation Beyond Gradient for Signal Processing and Machine LearningIEEE Transactions on Signal Processing (IEEE TSP), 2023
Hadrien Hendrikx
G. Fort
Eric Moulines
Hoi-To Wai
260
17
0
22 Feb 2023
FOSI: Hybrid First and Second Order Optimization
FOSI: Hybrid First and Second Order OptimizationInternational Conference on Learning Representations (ICLR), 2023
Hadar Sivan
Moshe Gabel
Assaf Schuster
ODL
343
2
0
16 Feb 2023
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural
  Policy Gradient Methods
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient MethodsNeural Information Processing Systems (NeurIPS), 2022
Yanli Liu
Jianchao Tan
Tamer Basar
W. Yin
387
121
0
15 Nov 2022
Convergence Rates of Stochastic Zeroth-order Gradient Descent for Ł
  ojasiewicz Functions
Convergence Rates of Stochastic Zeroth-order Gradient Descent for Ł ojasiewicz Functions
Tianyu Wang
Yasong Feng
315
2
0
31 Oct 2022
SP2: A Second Order Stochastic Polyak Method
SP2: A Second Order Stochastic Polyak MethodInternational Conference on Learning Representations (ICLR), 2022
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
181
14
0
17 Jul 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
267
8
0
20 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
335
11
0
06 Jun 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
147
1
0
18 May 2022
Can We Do Better Than Random Start? The Power of Data Outsourcing
Can We Do Better Than Random Start? The Power of Data Outsourcing
Yi Chen
Jing-rong Dong
Xin T. Tong
100
0
0
17 May 2022
A Novel Fast Exact Subproblem Solver for Stochastic Quasi-Newton Cubic
  Regularized Optimization
A Novel Fast Exact Subproblem Solver for Stochastic Quasi-Newton Cubic Regularized Optimization
Jarad Forristal
J. Griffin
Wenwen Zhou
S. Yektamaram
ODL
201
0
0
19 Apr 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized
  Learning: Part I
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part IIEEE Transactions on Signal Processing (IEEE Trans. Signal Process.), 2022
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
245
19
0
19 Jan 2022
Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
  Step Size
Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive Step Size
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
ODL
107
0
0
30 Dec 2021
Adaptive First- and Second-Order Algorithms for Large-Scale Machine
  Learning
Adaptive First- and Second-Order Algorithms for Large-Scale Machine Learning
Sanae Lotfi
Tiphaine Bonniot de Ruisselet
D. Orban
Andrea Lodi
ODL
141
1
0
29 Nov 2021
Bolstering Stochastic Gradient Descent with Model Building
Bolstering Stochastic Gradient Descent with Model BuildingTOP - An Official Journal of the Spanish Society of Statistics and Operations Research (TOP), 2021
Ş. Birbil
Özgür Martin
Gönenç Onay
Figen Oztoprak
ODL
341
1
0
13 Nov 2021
A theoretical and empirical study of new adaptive algorithms with
  additional momentum steps and shifted updates for stochastic non-convex
  optimization
A theoretical and empirical study of new adaptive algorithms with additional momentum steps and shifted updates for stochastic non-convex optimization
C. Alecsa
199
1
0
16 Oct 2021
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
209
23
0
04 Oct 2021
slimTrain -- A Stochastic Approximation Method for Training Separable
  Deep Neural Networks
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
214
8
0
28 Sep 2021
Revisiting Recursive Least Squares for Training Deep Neural Networks
Revisiting Recursive Least Squares for Training Deep Neural Networks
Chunyuan Zhang
Qi Song
Hui Zhou
Yi-gui Ou
Hongyao Deng
Laurence Yang
ODL
178
7
0
07 Sep 2021
SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients
SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients
Feihu Huang
Junyi Li
Heng-Chiao Huang
ODL
560
48
0
15 Jun 2021
Tensor Normal Training for Deep Learning Models
Tensor Normal Training for Deep Learning ModelsNeural Information Processing Systems (NeurIPS), 2021
Yi Ren
Shiqian Ma
328
30
0
05 Jun 2021
Differentially private inference via noisy optimization
Differentially private inference via noisy optimizationAnnals of Statistics (Ann. Stat.), 2021
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
444
34
0
19 Mar 2021
Secure Bilevel Asynchronous Vertical Federated Learning with Backward
  Updating
Secure Bilevel Asynchronous Vertical Federated Learning with Backward UpdatingAAAI Conference on Artificial Intelligence (AAAI), 2021
Qingsong Zhang
Bin Gu
Cheng Deng
Heng-Chiao Huang
FedML
118
79
0
01 Mar 2021
Kronecker-factored Quasi-Newton Methods for Deep Learning
Kronecker-factored Quasi-Newton Methods for Deep Learning
Yi Ren
Achraf Bahamou
Shiqian Ma
ODL
240
5
0
12 Feb 2021
An Adaptive Stochastic Sequential Quadratic Programming with
  Differentiable Exact Augmented Lagrangians
An Adaptive Stochastic Sequential Quadratic Programming with Differentiable Exact Augmented LagrangiansMathematical programming (Math. Program.), 2021
Sen Na
M. Anitescu
Mladen Kolar
293
56
0
10 Feb 2021
Stochastic Damped L-BFGS with Controlled Norm of the Hessian
  Approximation
Stochastic Damped L-BFGS with Controlled Norm of the Hessian Approximation
Sanae Lotfi
Tiphaine Bonniot de Ruisselet
D. Orban
Andrea Lodi
ODL
98
6
0
10 Dec 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Asynchronous Parallel Stochastic Quasi-Newton MethodsParallel Computing (PC), 2020
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
228
10
0
02 Nov 2020
An adaptive Hessian approximated stochastic gradient MCMC method
An adaptive Hessian approximated stochastic gradient MCMC methodJournal of Computational Physics (JCP), 2020
Yating Wang
Wei Deng
Guang Lin
BDL
114
5
0
03 Oct 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine LearningProceedings of the IEEE (Proc. IEEE), 2020
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
282
146
0
02 Oct 2020
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for
  Nonconvex Stochastic Optimization
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization
Xuezhe Ma
ODL
467
34
0
28 Sep 2020
Learning explanations that are hard to vary
Learning explanations that are hard to varyInternational Conference on Learning Representations (ICLR), 2020
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
359
215
0
01 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
219
0
0
26 Aug 2020
Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit
  Layers
Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit Layers
Philipp Geiger
C. Straehle
AI4CE
512
29
0
17 Aug 2020
Enhance Curvature Information by Structured Stochastic Quasi-Newton
  Methods
Enhance Curvature Information by Structured Stochastic Quasi-Newton Methods
Minghan Yang
Dong Xu
Yongfeng Li
Zaiwen Wen
Mengyun Chen
ODL
163
3
0
17 Jun 2020
Practical Quasi-Newton Methods for Training Deep Neural Networks
Practical Quasi-Newton Methods for Training Deep Neural Networks
Shiqian Ma
Yi Ren
Achraf Bahamou
ODL
415
116
0
16 Jun 2020
Sketchy Empirical Natural Gradient Methods for Deep Learning
Sketchy Empirical Natural Gradient Methods for Deep Learning
Minghan Yang
Dong Xu
Zaiwen Wen
Mengyun Chen
Pengxiang Xu
222
15
0
10 Jun 2020
Structure preserving deep learning
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
217
47
0
05 Jun 2020
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive
  Step Size
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step SizeIEEE Transactions on Knowledge and Data Engineering (TKDE), 2019
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Xingtai Lv
170
4
0
01 Dec 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex
  Optimization
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex OptimizationMathematical programming (Math. Program.), 2019
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
210
36
0
21 Oct 2019
A Stochastic Variance Reduced Nesterov's Accelerated Quasi-Newton Method
A Stochastic Variance Reduced Nesterov's Accelerated Quasi-Newton MethodInternational Conference on Machine Learning and Applications (ICMLA), 2019
Sota Yasuda
Shahrzad Mahboubi
S. Indrapriyadarsini
H. Ninomiya
H. Asai
ODL
58
7
0
17 Oct 2019
A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient
A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient
S. Indrapriyadarsini
Shahrzad Mahboubi
H. Ninomiya
H. Asai
ODL
100
10
0
09 Sep 2019
Combining Stochastic Adaptive Cubic Regularization with Negative
  Curvature for Nonconvex Optimization
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex OptimizationJournal of Optimization Theory and Applications (JOTA), 2019
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
144
17
0
27 Jun 2019
To Relieve Your Headache of Training an MRF, Take AdVIL
To Relieve Your Headache of Training an MRF, Take AdVIL
Chongxuan Li
Chao Du
Kun Xu
Max Welling
Jun Zhu
Bo Zhang
163
9
0
24 Jan 2019
A fast quasi-Newton-type method for large-scale stochastic optimisation
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
132
7
0
29 Sep 2018
12
Next
Page 1 of 2