ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.03188
  4. Cited By
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data

The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data

11 July 2016
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
ArXivPDFHTML

Papers citing "The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data"

21 / 21 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
45
0
0
08 May 2025
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Jimmy Huy Tran
T. S. Kleppe
BDL
38
0
0
25 Apr 2025
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
23
8
0
03 May 2024
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Methods and applications of PDMP samplers with boundary conditions
Methods and applications of PDMP samplers with boundary conditions
J. Bierkens
Sebastiano Grazzi
Gareth O. Roberts
Moritz Schauer
10
7
0
14 Mar 2023
Sampling using Adaptive Regenerative Processes
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
10
1
0
18 Oct 2022
Adaptive importance sampling based on fault tree analysis for piecewise
  deterministic Markov process
Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process
G. Chennetier
Hassane Chraïbi
A. Dutfoy
Josselin Garnier
11
2
0
17 Sep 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
10
25
0
20 Mar 2022
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
21
28
0
21 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
22
9
0
30 May 2021
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian
  Processes on Partitioned Domains
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
M. Peruzzi
Sudipto Banerjee
Andrew O. Finley
25
52
0
25 Mar 2020
A piecewise deterministic Monte Carlo method for diffusion bridges
A piecewise deterministic Monte Carlo method for diffusion bridges
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
DiffM
6
22
0
16 Jan 2020
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
16
11
0
24 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
11
135
0
16 Jul 2019
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond
  the reversible scenario
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
25
28
0
14 Jun 2019
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
11
31
0
26 Sep 2017
Exponential Ergodicity of the Bouncy Particle Sampler
Exponential Ergodicity of the Bouncy Particle Sampler
George Deligiannidis
Alexandre Bouchard-Coté
Arnaud Doucet
13
49
0
12 May 2017
Generalized and hybrid Metropolis-Hastings overdamped Langevin
  algorithms
Generalized and hybrid Metropolis-Hastings overdamped Langevin algorithms
R. Poncet
20
11
0
19 Jan 2017
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Y. Zou
27
29
0
20 May 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,260
0
09 Jun 2012
1