Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.03287
Cited By
Deep vs. shallow networks : An approximation theory perspective
10 August 2016
H. Mhaskar
T. Poggio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep vs. shallow networks : An approximation theory perspective"
50 / 61 papers shown
Title
An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics
Yuchen Lin
Yong Zhang
Sihan Feng
Hong Zhao
41
0
0
05 Jan 2025
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
55
1
0
31 Dec 2024
Golden Ratio-Based Sufficient Dimension Reduction
Wenjing Yang
Yuhong Yang
33
0
0
25 Oct 2024
Just How Flexible are Neural Networks in Practice?
Ravid Shwartz-Ziv
Micah Goldblum
Arpit Bansal
C. Bayan Bruss
Yann LeCun
Andrew Gordon Wilson
47
4
0
17 Jun 2024
Federated Learning with Flexible Architectures
Jong-Ik Park
Carlee Joe-Wong
FedML
45
3
0
14 Jun 2024
Understanding Encoder-Decoder Structures in Machine Learning Using Information Measures
Jorge F. Silva
Victor Faraggi
Camilo Ramírez
Álvaro F. Egaña
Eduardo Pavez
25
1
0
30 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
82
1
0
15 May 2024
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Rates of Approximation by ReLU Shallow Neural Networks
Tong Mao
Ding-Xuan Zhou
29
19
0
24 Jul 2023
Approximation by non-symmetric networks for cross-domain learning
H. Mhaskar
36
1
0
06 May 2023
Deep neural network approximation of composite functions without the curse of dimensionality
Adrian Riekert
26
0
0
12 Apr 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
82
7
0
29 Dec 2022
The BUTTER Zone: An Empirical Study of Training Dynamics in Fully Connected Neural Networks
Charles Edison Tripp
J. Perr-Sauer
L. Hayne
M. Lunacek
Jamil Gafur
AI4CE
28
1
0
25 Jul 2022
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
44
14
0
17 Jun 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
26
1
0
25 Mar 2022
De Rham compatible Deep Neural Network FEM
M. Longo
J. Opschoor
Nico Disch
Christoph Schwab
Jakob Zech
33
8
0
14 Jan 2022
Structural Sieves
Konrad Menzel
11
1
0
01 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
16
33
0
02 Jul 2021
Predicting Generalization in Deep Learning via Local Measures of Distortion
Abhejit Rajagopal
Vamshi C. Madala
S. Chandrasekaran
P. Larson
13
1
0
13 Dec 2020
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks
Enzo Tartaglione
Andrea Bragagnolo
Attilio Fiandrotti
Marco Grangetto
ODL
UQCV
20
34
0
16 Nov 2020
deep21: a Deep Learning Method for 21cm Foreground Removal
T. Lucas Makinen
Lachlan Lancaster
F. Villaescusa-Navarro
Peter Melchior
S. Ho
Laurence Perreault Levasseur
D. Spergel
3DPC
30
28
0
29 Oct 2020
Analysis of three dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis
Hongwei Guo
X. Zhuang
Pengwan Chen
N. Alajlan
Timon Rabczuk
27
58
0
03 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
30
86
0
30 Sep 2020
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
126
0
31 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Hierarchically Compositional Tasks and Deep Convolutional Networks
Arturo Deza
Q. Liao
Andrzej Banburski
T. Poggio
BDL
OOD
33
2
0
24 Jun 2020
The Curious Case of Convex Neural Networks
S. Sivaprasad
Ankur Singh
Naresh Manwani
Vineet Gandhi
46
27
0
09 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
22
15
0
03 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
24
237
0
27 Nov 2019
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
17
8
0
22 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
34
161
0
25 Aug 2019
Super-resolution meets machine learning: approximation of measures
H. Mhaskar
SupR
11
4
0
10 Jul 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
22
138
0
05 May 2019
Stability and Generalization of Graph Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
MLT
30
153
0
03 May 2019
Deep Neural Networks for Rotation-Invariance Approximation and Learning
C. Chui
Shao-Bo Lin
Ding-Xuan Zhou
32
34
0
03 Apr 2019
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
28
45
0
08 Mar 2019
Shallow Neural Networks for Fluid Flow Reconstruction with Limited Sensors
N. Benjamin Erichson
L. Mathelin
Z. Yao
Steven L. Brunton
Michael W. Mahoney
J. Nathan Kutz
AI4CE
27
34
0
20 Feb 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
16
207
0
08 Jan 2019
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
22
0
22 Nov 2018
Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications
Deren Lei
Zichen Sun
Yijun Xiao
William Yang Wang
35
14
0
01 Nov 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
47
192
0
02 Oct 2018
Deep Neural Networks for Estimation and Inference
M. Farrell
Tengyuan Liang
S. Misra
BDL
27
254
0
26 Sep 2018
A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients
Arnulf Jentzen
Diyora Salimova
Timo Welti
AI4CE
24
116
0
19 Sep 2018
A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philippe von Wurstemberger
16
167
0
07 Sep 2018
1
2
Next