Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.05343
Cited By
Decoupled Neural Interfaces using Synthetic Gradients
18 August 2016
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Decoupled Neural Interfaces using Synthetic Gradients"
50 / 209 papers shown
Title
Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout
Zhao Chen
Jiquan Ngiam
Yanping Huang
Thang Luong
Henrik Kretzschmar
Yuning Chai
Dragomir Anguelov
41
206
0
14 Oct 2020
Interlocking Backpropagation: Improving depthwise model-parallelism
Aidan Gomez
Oscar Key
Kuba Perlin
Stephen Gou
Nick Frosst
J. Dean
Y. Gal
8
19
0
08 Oct 2020
Feed-Forward On-Edge Fine-tuning Using Static Synthetic Gradient Modules
R. Neven
Marian Verhelst
Tinne Tuytelaars
Toon Goedemé
21
1
0
21 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Learning Functors using Gradient Descent
Bruno Gavranovic
19
5
0
15 Sep 2020
A Practical Layer-Parallel Training Algorithm for Residual Networks
Qi Sun
Hexin Dong
Zewei Chen
Weizhen Dian
Jiacheng Sun
Yitong Sun
Zhenguo Li
Bin Dong
ODL
22
2
0
03 Sep 2020
LoCo: Local Contrastive Representation Learning
Yuwen Xiong
Mengye Ren
R. Urtasun
SSL
DRL
35
69
0
04 Aug 2020
Universality of Gradient Descent Neural Network Training
G. Welper
21
7
0
27 Jul 2020
Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner
Eugene Lee
E. Chen
Chen-Yi Lee
24
159
0
14 Jul 2020
A Theoretical Framework for Target Propagation
Alexander Meulemans
Francesco S. Carzaniga
Johan A. K. Suykens
João Sacramento
Benjamin Grewe
AAML
27
77
0
25 Jun 2020
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Julien Launay
Iacopo Poli
Franccois Boniface
Florent Krzakala
36
62
0
23 Jun 2020
Extension of Direct Feedback Alignment to Convolutional and Recurrent Neural Network for Bio-plausible Deep Learning
Donghyeon Han
Gwangtae Park
Junha Ryu
H. Yoo
3DV
10
5
0
23 Jun 2020
Parameter-Based Value Functions
Francesco Faccio
Louis Kirsch
Jürgen Schmidhuber
OffRL
20
24
0
16 Jun 2020
Interaction Networks: Using a Reinforcement Learner to train other Machine Learning algorithms
Florian Dietz
17
1
0
15 Jun 2020
On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
24
32
0
26 May 2020
Deep Learning: Our Miraculous Year 1990-1991
J. Schmidhuber
3DGS
MedIm
22
6
0
12 May 2020
Modularizing Deep Learning via Pairwise Learning With Kernels
Shiyu Duan
Shujian Yu
José C. Príncipe
MoMe
27
20
0
12 May 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
S. Hu
Pablo G. Moreno
Yanghua Xiao
Xin Shen
G. Obozinski
Neil D. Lawrence
Andreas C. Damianou
BDL
27
125
0
27 Apr 2020
Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image Synthesis
Jogendra Nath Kundu
Siddharth Seth
Varun Jampani
M. Rakesh
R. Venkatesh Babu
Anirban Chakraborty
SSL
3DH
16
79
0
09 Apr 2020
Policy Evaluation Networks
J. Harb
Tom Schaul
Doina Precup
Pierre-Luc Bacon
OffRL
4
36
0
26 Feb 2020
Bounding the expected run-time of nonconvex optimization with early stopping
Thomas Flynn
K. Yu
A. Malik
Nicolas DÍmperio
Shinjae Yoo
18
2
0
20 Feb 2020
Towards Crowdsourced Training of Large Neural Networks using Decentralized Mixture-of-Experts
Max Ryabinin
Anton I. Gusev
FedML
27
48
0
10 Feb 2020
Large-Scale Gradient-Free Deep Learning with Recursive Local Representation Alignment
Alexander Ororbia
A. Mali
Daniel Kifer
C. Lee Giles
13
2
0
10 Feb 2020
Sideways: Depth-Parallel Training of Video Models
Mateusz Malinowski
G. Swirszcz
João Carreira
Viorica Patraucean
MDE
33
13
0
17 Jan 2020
Questions to Guide the Future of Artificial Intelligence Research
J. Ott
14
3
0
21 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
74
6,079
0
10 Dec 2019
Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks
Thomas Mesnard
Gaetan Vignoud
João Sacramento
Walter Senn
Yoshua Bengio
27
7
0
15 Nov 2019
Label-Conditioned Next-Frame Video Generation with Neural Flows
Sergey Tarasenko
VGen
21
1
0
16 Oct 2019
Decoupling Hierarchical Recurrent Neural Networks With Locally Computable Losses
Asier Mujika
Felix Weissenberger
Angelika Steger
10
0
0
11 Oct 2019
Learning to Remember from a Multi-Task Teacher
Yuwen Xiong
Mengye Ren
R. Urtasun
CLL
KELM
OOD
24
4
0
10 Oct 2019
Meta-Learning Deep Energy-Based Memory Models
Sergey Bartunov
Jack W. Rae
Simon Osindero
Timothy Lillicrap
45
34
0
07 Oct 2019
Gated Linear Networks
William H. Guss
Tor Lattimore
David Budden
Avishkar Bhoopchand
Christopher Mattern
...
Ruslan Salakhutdinov
Jianan Wang
Peter Toth
Simon Schmitt
Marcus Hutter
AI4CE
18
40
0
30 Sep 2019
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Qian Yang
Zhouyuan Huo
Wenlin Wang
Heng-Chiao Huang
Lawrence Carin
17
9
0
14 Sep 2019
On the Acceleration of Deep Learning Model Parallelism with Staleness
An Xu
Zhouyuan Huo
Heng-Chiao Huang
8
37
0
05 Sep 2019
Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks
Charlotte Frenkel
M. Lefebvre
D. Bol
11
23
0
03 Sep 2019
Spiking Neural Predictive Coding for Continual Learning from Data Streams
Alexander Ororbia
21
25
0
23 Aug 2019
Metalearned Neural Memory
Tsendsuren Munkhdalai
Alessandro Sordoni
Tong Wang
Adam Trischler
KELM
17
60
0
23 Jul 2019
Compositional Deep Learning
Bruno Gavranovic
BDL
AI4CE
17
7
0
16 Jul 2019
A Unified Framework of Online Learning Algorithms for Training Recurrent Neural Networks
O. Marschall
Kyunghyun Cho
Cristina Savin
FedML
33
72
0
05 Jul 2019
Fully Decoupled Neural Network Learning Using Delayed Gradients
Huiping Zhuang
Yi Wang
Qinglai Liu
Shuai Zhang
Zhiping Lin
FedML
14
29
0
21 Jun 2019
Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural Networks
Ahmed T. Elthakeb
Prannoy Pilligundla
Alex Cloninger
H. Esmaeilzadeh
MQ
26
8
0
14 Jun 2019
Associated Learning: Decomposing End-to-end Backpropagation based on Auto-encoders and Target Propagation
Yu-Wei Kao
Hung-Hsuan Chen
BDL
20
5
0
13 Jun 2019
Principled Training of Neural Networks with Direct Feedback Alignment
Julien Launay
Iacopo Poli
Florent Krzakala
19
35
0
11 Jun 2019
Learning to solve the credit assignment problem
B. Lansdell
P. Prakash
Konrad Paul Kording
11
50
0
03 Jun 2019
Using local plasticity rules to train recurrent neural networks
O. Marschall
Kyunghyun Cho
Cristina Savin
9
2
0
28 May 2019
Putting An End to End-to-End: Gradient-Isolated Learning of Representations
Sindy Löwe
Peter O'Connor
Bastiaan S. Veeling
SSL
6
143
0
28 May 2019
Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting
Alexander Ororbia
A. Mali
Daniel Kifer
C. Lee Giles
CLL
KELM
32
15
0
25 May 2019
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
17
21
0
16 May 2019
Formal derivation of Mesh Neural Networks with their Forward-Only gradient Propagation
Federico A. Galatolo
M. G. Cimino
G. Vaglini
AI4CE
6
2
0
16 May 2019
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
37
79
0
13 May 2019
Previous
1
2
3
4
5
Next