ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09787
  4. Cited By
Edward: A library for probabilistic modeling, inference, and criticism

Edward: A library for probabilistic modeling, inference, and criticism

31 October 2016
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
ArXivPDFHTML

Papers citing "Edward: A library for probabilistic modeling, inference, and criticism"

50 / 55 papers shown
Title
Identifying latent disease factors differently expressed in patient
  subgroups using group factor analysis
Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
Fabio S. Ferreira
John Ashburner
Arabella Bouzigues
Chatrin Suksasilp
Lucy L. Russell
...
Fermin Moreno
Barbara Borroni
Samuel Kaski
Jonathan D. Rohrer
J. Mourão-Miranda
CML
51
0
0
10 Oct 2024
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDL
AI4CE
UQCV
28
0
0
13 Sep 2022
NeuralUQ: A comprehensive library for uncertainty quantification in
  neural differential equations and operators
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
34
37
0
25 Aug 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
29
9
0
22 Aug 2022
On Reinforcement Learning, Effect Handlers, and the State Monad
On Reinforcement Learning, Effect Handlers, and the State Monad
Ugo Dal Lago
Francesco Gavazzo
Alexis Ghyselen
31
1
0
29 Mar 2022
Stochastic Perturbations of Tabular Features for Non-Deterministic
  Inference with Automunge
Stochastic Perturbations of Tabular Features for Non-Deterministic Inference with Automunge
Nicholas J. Teague
AAML
38
1
0
18 Feb 2022
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
24
2
0
05 Oct 2021
Supervising the Decoder of Variational Autoencoders to Improve
  Scientific Utility
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility
Liyun Tu
Austin Talbot
Neil Gallagher
David Carlson
DRL
32
2
0
09 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
63
1,112
0
07 Jul 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
Ziniu Wu
Amir Shaikhha
Rong Zhu
Kai Zeng
Yuxing Han
Jingren Zhou
BDL
17
23
0
29 Dec 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDL
MedIm
22
9
0
16 Sep 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
29
485
0
12 Feb 2020
Streamlined Variational Inference for Linear Mixed Models with Crossed
  Random Effects
Streamlined Variational Inference for Linear Mixed Models with Crossed Random Effects
M. Menictas
Gioia Di Credico
M. Wand
14
10
0
04 Oct 2019
Uncertainty Quantification with Statistical Guarantees in End-to-End
  Autonomous Driving Control
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
18
105
0
21 Sep 2019
Correcting Predictions for Approximate Bayesian Inference
Correcting Predictions for Approximate Bayesian Inference
Tomasz Kuśmierczyk
J. Sakaya
Arto Klami
27
10
0
11 Sep 2019
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy
Javier Cózar
Rafael Cabañas
Antonio Salmerón
A. Masegosa
BDL
27
3
0
29 Aug 2019
Distributions.jl: Definition and Modeling of Probability Distributions
  in the JuliaStats Ecosystem
Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem
Mathieu Besançon
Theodore Papamarkou
D. Anthoff
Alex Arslan
Simon Byrne
Dahua Lin
John Pearson
GP
32
78
0
19 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
27
135
0
16 Jul 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
29
10
0
10 Jul 2019
Hyper-Molecules: on the Representation and Recovery of Dynamical
  Structures, with Application to Flexible Macro-Molecular Structures in
  Cryo-EM
Hyper-Molecules: on the Representation and Recovery of Dynamical Structures, with Application to Flexible Macro-Molecular Structures in Cryo-EM
Roy R. Lederman
Joakim Andén
A. Singer
37
30
0
02 Jul 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of
  Non-linear Dynamics With Guaranteed Stability
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
23
136
0
09 Jun 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
15
1
0
03 Apr 2019
Statistical Guarantees for the Robustness of Bayesian Neural Networks
Statistical Guarantees for the Robustness of Bayesian Neural Networks
L. Cardelli
Marta Kwiatkowska
Luca Laurenti
Nicola Paoletti
A. Patané
Matthew Wicker
AAML
31
54
0
05 Mar 2019
Unsupervised learning with contrastive latent variable models
Unsupervised learning with contrastive latent variable models
Kristen A. Severson
S. Ghosh
Kenney Ng
SSL
DRL
27
38
0
14 Nov 2018
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
25
23
0
02 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
30
196
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
34
31
0
20 Jul 2018
Quasi-Monte Carlo Variational Inference
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
30
58
0
04 Jul 2018
Non-Parametric Calibration of Probabilistic Regression
Non-Parametric Calibration of Probabilistic Regression
Hao Song
Meelis Kull
Peter A. Flach
9
4
0
20 Jun 2018
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
Boosting Black Box Variational Inference
Boosting Black Box Variational Inference
Francesco Locatello
Gideon Dresdner
Rajiv Khanna
Isabel Valera
Gunnar Rätsch
42
31
0
06 Jun 2018
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
  Semantics and Inference Algorithms
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
Yi Wu
Siddharth Srivastava
N. Hay
S. Du
Stuart J. Russell
31
25
0
06 Jun 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
19
42
0
29 May 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
Alpha-Beta Divergence For Variational Inference
Alpha-Beta Divergence For Variational Inference
Jean-Baptiste Regli
Ricardo M. A. Silva
BDL
9
24
0
02 May 2018
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Eric Zhan
Stephan Zheng
Yisong Yue
Long Sha
P. Lucey
25
88
0
20 Mar 2018
Symbol Emergence in Cognitive Developmental Systems: a Survey
Symbol Emergence in Cognitive Developmental Systems: a Survey
T. Taniguchi
Emre Ugur
Matej Hoffmann
L. Jamone
Takayuki Nagai
...
Toshihiko Matsuka
N. Iwahashi
Erhan Öztop
J. Piater
Florentin Wörgötter
31
90
0
26 Jan 2018
Sequential Preference-Based Optimization
Sequential Preference-Based Optimization
Ian Dewancker
Jakob Bauer
M. McCourt
38
6
0
09 Jan 2018
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
46
346
0
28 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
37
101
0
16 Jun 2017
Deep Learning: A Bayesian Perspective
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
41
115
0
01 Jun 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
10
21
0
24 May 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
69
732
0
24 May 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
30
196
0
27 Mar 2017
Dynamic Bernoulli Embeddings for Language Evolution
Dynamic Bernoulli Embeddings for Language Evolution
Maja R. Rudolph
David M. Blei
BDL
22
34
0
23 Mar 2017
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Dustin Tran
Rajesh Ranganath
David M. Blei
VLM
GAN
30
100
0
28 Feb 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
12
Next