ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09787
  4. Cited By
Edward: A library for probabilistic modeling, inference, and criticism
v1v2v3 (latest)

Edward: A library for probabilistic modeling, inference, and criticism

31 October 2016
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
ArXiv (abs)PDFHTML

Papers citing "Edward: A library for probabilistic modeling, inference, and criticism"

50 / 128 papers shown
Title
Prior-Guided Residual Diffusion: Calibrated and Efficient Medical Image Segmentation
Prior-Guided Residual Diffusion: Calibrated and Efficient Medical Image Segmentation
Fuyou Mao
Beining Wu
Yanfeng Jiang
Han Xue
Yan Tang
Hao Zhang
MedIm
80
1
0
01 Sep 2025
Identifying latent disease factors differently expressed in patient
  subgroups using group factor analysis
Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
Fabio S. Ferreira
John Ashburner
Arabella Bouzigues
Chatrin Suksasilp
Lucy L. Russell
...
Fermin Moreno
Barbara Borroni
Samuel Kaski
Jonathan D. Rohrer
J. Mourão-Miranda
CML
147
0
0
10 Oct 2024
Probabilistic Answer Set Programming with Discrete and Continuous Random
  Variables
Probabilistic Answer Set Programming with Discrete and Continuous Random VariablesTheory and Practice of Logic Programming (TPLP), 2024
Damiano Azzolini
Fabrizio Riguzzi
158
2
0
30 Sep 2024
Generalized Variable Selection Algorithms for Gaussian Process Models by
  LASSO-like Penalty
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like PenaltyJournal of Computational And Graphical Statistics (JCGS), 2023
Zhiyong Hu
D. Dey
169
4
0
08 Sep 2023
Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks
Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks
Sadhana Lolla
I. Elistratov
Alejandro Perez
Elaheh Ahmadi
Daniela Rus
Alexander Amini
UQCV
74
1
0
01 Aug 2023
World Models and Predictive Coding for Cognitive and Developmental
  Robotics: Frontiers and Challenges
World Models and Predictive Coding for Cognitive and Developmental Robotics: Frontiers and Challenges
T. Taniguchi
Shingo Murata
Masahiro Suzuki
D. Ognibene
Pablo Lanillos
...
L. Jamone
Tomoaki Nakamura
Alejandra Ciria
B. Lara
G. Pezzulo
247
73
0
14 Jan 2023
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo methodIEEE Control Systems (IEEE Control Syst. Mag.), 2022
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
166
15
0
26 Oct 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDLAI4CEUQCV
165
1
0
13 Sep 2022
NeuralUQ: A comprehensive library for uncertainty quantification in
  neural differential equations and operators
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
217
46
0
25 Aug 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
297
11
0
22 Aug 2022
Foundation Posteriors for Approximate Probabilistic Inference
Foundation Posteriors for Approximate Probabilistic InferenceNeural Information Processing Systems (NeurIPS), 2022
Mike Wu
Noah D. Goodman
UQCV
207
6
0
19 May 2022
On Reinforcement Learning, Effect Handlers, and the State Monad
On Reinforcement Learning, Effect Handlers, and the State Monad
Ugo Dal Lago
Francesco Gavazzo
Alexis Ghyselen
130
2
0
29 Mar 2022
Stochastic Perturbations of Tabular Features for Non-Deterministic
  Inference with Automunge
Stochastic Perturbations of Tabular Features for Non-Deterministic Inference with Automunge
Nicholas J. Teague
AAML
174
1
0
18 Feb 2022
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modelingInternational Conference on Learning Representations (ICLR), 2021
Gianluigi Silvestri
Emily Fertig
David A. Moore
Luca Ambrogioni
BDLTPMAI4CE
345
4
0
12 Oct 2021
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
159
2
0
05 Oct 2021
Supervising the Decoder of Variational Autoencoders to Improve
  Scientific Utility
Supervising the Decoder of Variational Autoencoders to Improve Scientific UtilityIEEE Transactions on Signal Processing (IEEE TSP), 2021
Liyun Tu
Austin Talbot
Neil Gallagher
David Carlson
DRL
144
3
0
09 Sep 2021
Pixyz: a Python library for developing deep generative models
Pixyz: a Python library for developing deep generative models
Masahiro Suzuki
T. Kaneko
Y. Matsuo
AI4CE
175
3
0
28 Jul 2021
JAGS, NIMBLE, Stan: a detailed comparison among Bayesian MCMC software
JAGS, NIMBLE, Stan: a detailed comparison among Bayesian MCMC software
Mario Beraha
Daniel Falco
A. Guglielmi
122
10
0
20 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
527
1,474
0
07 Jul 2021
Local convexity of the TAP free energy and AMP convergence for
  Z2-synchronization
Local convexity of the TAP free energy and AMP convergence for Z2-synchronizationAnnals of Statistics (Ann. Stat.), 2021
Michael Celentano
Z. Fan
Song Mei
FedML
255
26
0
21 Jun 2021
Expectation Programming: Adapting Probabilistic Programming Systems to
  Estimate Expectations Efficiently
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations EfficientlyConference on Uncertainty in Artificial Intelligence (UAI), 2021
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
155
0
0
09 Jun 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
  Inference from Sampled Trajectories
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled TrajectoriesPhysical Review E (PRE), 2021
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
247
0
0
03 Jun 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Boosting Variational Inference With Locally Adaptive Step-SizesInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
110
2
0
19 May 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
164
10
0
13 May 2021
Breiman's two cultures: You don't have to choose sides
Breiman's two cultures: You don't have to choose sidesObservational Studies (OS), 2021
Andrew C. Miller
N. Foti
E. Fox
164
11
0
25 Apr 2021
Variational Inference for Category Recommendation in E-Commerce
  platforms
Variational Inference for Category Recommendation in E-Commerce platforms
Ramasubramanian Balasubramanian
Venugopal Mani
Abhinav Mathur
Sushant Kumar
Kannan Achan
CMLDRL
237
1
0
15 Apr 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
225
1
0
01 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference CombinatorsConference on Uncertainty in Artificial Intelligence (UAI), 2021
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
264
17
0
01 Mar 2021
BayesPerf: Minimizing Performance Monitoring Errors Using Bayesian
  Statistics
BayesPerf: Minimizing Performance Monitoring Errors Using Bayesian StatisticsInternational Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021
Subho Sankar Banerjee
Saurabh Jha
Zbigniew T. Kalbarczyk
Ravishankar Iyer
110
16
0
22 Feb 2021
Causal Mediation Analysis with Hidden Confounders
Causal Mediation Analysis with Hidden ConfoundersWeb Search and Data Mining (WSDM), 2021
Lu Cheng
Ruocheng Guo
Huan Liu
CML
268
16
0
21 Feb 2021
Automatic variational inference with cascading flows
Automatic variational inference with cascading flowsInternational Conference on Machine Learning (ICML), 2021
Luca Ambrogioni
Gianluigi Silvestri
Marcel van Gerven
TPMBDL
138
10
0
09 Feb 2021
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
Ziniu Wu
Amir Shaikhha
Rong Zhu
Kai Zeng
Yuxing Han
Jingren Zhou
BDL
216
31
0
29 Dec 2020
On Variational Inference for User Modeling in Attribute-Driven
  Collaborative Filtering
On Variational Inference for User Modeling in Attribute-Driven Collaborative Filtering
Venugopal Mani
Ramasubramanian Balasubramanian
Sushant Kumar
Abhinav Mathur
Kannan Achan
CMLBDLEgoV
171
1
0
02 Dec 2020
Bayesian Optimization Meets Laplace Approximation for Robotic
  Introspection
Bayesian Optimization Meets Laplace Approximation for Robotic Introspection
Matthias Humt
Jongseo Lee
Rudolph Triebel
BDLUQCV
217
12
0
30 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
277
11
0
16 Sep 2020
Exploring Variational Deep Q Networks
Exploring Variational Deep Q Networks
A. H. Bell-Thomas
56
0
0
04 Aug 2020
Cross-Domain Medical Image Translation by Shared Latent Gaussian Mixture
  Model
Cross-Domain Medical Image Translation by Shared Latent Gaussian Mixture ModelInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020
Yingying Zhu
Youbao Tang
Yuxing Tang
Daniel C. Elton
Sungwon Lee
P. J. Pickhardt
Ronald M. Summers
MedIm
231
24
0
14 Jul 2020
Learning Hamiltonian Monte Carlo in R
Learning Hamiltonian Monte Carlo in R
Samuel Thomas
W. Tu
63
42
0
29 Jun 2020
Lipschitz standardization for multivariate learning
Lipschitz standardization for multivariate learning
Adrián Javaloy
Isabel Valera
149
0
0
26 Feb 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
277
604
0
12 Feb 2020
Automatic structured variational inference
Automatic structured variational inferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Luca Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
264
31
0
03 Feb 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine
  Learning
Big-Data Science in Porous Materials: Materials Genomics and Machine LearningChemical Reviews (Chem. Rev.), 2020
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
255
409
0
18 Jan 2020
Sampling Prediction-Matching Examples in Neural Networks: A
  Probabilistic Programming Approach
Sampling Prediction-Matching Examples in Neural Networks: A Probabilistic Programming Approach
Serena Booth
Ankit J. Shah
Yilun Zhou
J. Shah
BDL
101
1
0
09 Jan 2020
Estimating uncertainty of earthquake rupture using Bayesian neural
  network
Estimating uncertainty of earthquake rupture using Bayesian neural network
S. Ahamed
Md Mesbah Uddin
99
6
0
21 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient StatisticsInternational Conference on Machine Learning (ICML), 2019
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
179
7
0
04 Nov 2019
Attention for Inference Compilation
Attention for Inference CompilationInternational Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), 2019
William Harvey
Andreas Munk
A. G. Baydin
Alexander Bergholm
Frank Wood
169
9
0
25 Oct 2019
Probabilistic Surrogate Networks for Simulators with Unbounded
  Randomness
Probabilistic Surrogate Networks for Simulators with Unbounded RandomnessConference on Uncertainty in Artificial Intelligence (UAI), 2019
Andreas Munk
Berend Zwartsenberg
Adam Scibior
A. G. Baydin
Andrew Stewart
G. Fernlund
A. Poursartip
Frank Wood
TPM
208
5
0
25 Oct 2019
Streamlined Variational Inference for Linear Mixed Models with Crossed
  Random Effects
Streamlined Variational Inference for Linear Mixed Models with Crossed Random EffectsJournal of Computational And Graphical Statistics (JCGS), 2019
M. Menictas
Gioia Di Credico
M. Wand
187
15
0
04 Oct 2019
Uncertainty Quantification with Statistical Guarantees in End-to-End
  Autonomous Driving Control
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving ControlIEEE International Conference on Robotics and Automation (ICRA), 2019
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
251
116
0
21 Sep 2019
Correcting Predictions for Approximate Bayesian Inference
Correcting Predictions for Approximate Bayesian InferenceAAAI Conference on Artificial Intelligence (AAAI), 2019
Tomasz Kuśmierczyk
J. Sakaya
Arto Klami
113
11
0
11 Sep 2019
123
Next