Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.03530
Cited By
Understanding deep learning requires rethinking generalization
10 November 2016
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding deep learning requires rethinking generalization"
50 / 1,028 papers shown
Title
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
Jianing Zhu
Hengzhuang Li
Jiangchao Yao
Tongliang Liu
Jianliang Xu
Bo Han
OODD
48
12
0
06 Jun 2023
Proximity to Losslessly Compressible Parameters
Matthew Farrugia-Roberts
30
0
0
05 Jun 2023
Memorization Capacity of Multi-Head Attention in Transformers
Sadegh Mahdavi
Renjie Liao
Christos Thrampoulidis
26
23
0
03 Jun 2023
Combining Explicit and Implicit Regularization for Efficient Learning in Deep Networks
Dan Zhao
19
5
0
01 Jun 2023
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
41
1
0
31 May 2023
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise Learning
Jingfeng Zhang
Bo Song
Haohan Wang
Bo Han
Tongliang Liu
Lei Liu
Masashi Sugiyama
AAML
NoLa
34
14
0
28 May 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
29
4
0
26 May 2023
Sharpness-Aware Minimization Revisited: Weighted Sharpness as a Regularization Term
Yun Yue
Jiadi Jiang
Zhiling Ye
Ni Gao
Yongchao Liu
Kecheng Zhang
MLAU
ODL
33
11
0
25 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
40
12
0
22 May 2023
NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in Natural Language Processing
Tingting Wu
Xiao Ding
Minji Tang
Haotian Zhang
Bing Qin
Ting Liu
NoLa
34
10
0
18 May 2023
Small Models are Valuable Plug-ins for Large Language Models
Canwen Xu
Yichong Xu
Shuohang Wang
Yang Liu
Chenguang Zhu
Julian McAuley
LLMAG
44
45
0
15 May 2023
PreCog: Exploring the Relation between Memorization and Performance in Pre-trained Language Models
Leonardo Ranaldi
Elena Sofia Ruzzetti
Fabio Massimo Zanzotto
33
6
0
08 May 2023
Token-Level Fitting Issues of Seq2seq Models
Guangsheng Bao
Zhiyang Teng
Yue Zhang
29
0
0
08 May 2023
Analysis of Interpolating Regression Models and the Double Descent Phenomenon
T. McKelvey
9
0
0
17 Apr 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
16
0
13 Apr 2023
Improved Naive Bayes with Mislabeled Data
Qianhan Zeng
Yingqiu Zhu
Xuening Zhu
Feifei Wang
Weichen Zhao
Shuning Sun
Meng Su
Hansheng Wang
NoLa
13
2
0
13 Apr 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
42
35
0
02 Apr 2023
CoDeC: Communication-Efficient Decentralized Continual Learning
Sakshi Choudhary
Sai Aparna Aketi
Gobinda Saha
Kaushik Roy
CLL
53
3
0
27 Mar 2023
VEIL: Vetting Extracted Image Labels from In-the-Wild Captions for Weakly-Supervised Object Detection
Arushi Rai
Adriana Kovashka
27
0
0
16 Mar 2023
Learning with Noisy Labels through Learnable Weighting and Centroid Similarity
F. Wani
Maria Sofia Bucarelli
Fabrizio Silvestri
NoLa
37
3
0
16 Mar 2023
Inversion dynamics of class manifolds in deep learning reveals tradeoffs underlying generalisation
Simone Ciceri
Lorenzo Cassani
Matteo Osella
P. Rotondo
P. Pizzochero
M. Gherardi
41
7
0
09 Mar 2023
Over-training with Mixup May Hurt Generalization
Zixuan Liu
Ziqiao Wang
Hongyu Guo
Yongyi Mao
NoLa
34
11
0
02 Mar 2023
Average of Pruning: Improving Performance and Stability of Out-of-Distribution Detection
Zhen Cheng
Fei Zhu
Xu-Yao Zhang
Cheng-Lin Liu
MoMe
OODD
45
11
0
02 Mar 2023
Make Every Example Count: On the Stability and Utility of Self-Influence for Learning from Noisy NLP Datasets
Irina Bejan
Artem Sokolov
Katja Filippova
TDI
32
9
0
27 Feb 2023
On Interpretable Approaches to Cluster, Classify and Represent Multi-Subspace Data via Minimum Lossy Coding Length based on Rate-Distortion Theory
Kaige Lu
Avraham Chapman
45
0
0
21 Feb 2023
Latent Class-Conditional Noise Model
Jiangchao Yao
Bo Han
Zhihan Zhou
Ya Zhang
Ivor W. Tsang
NoLa
BDL
33
8
0
19 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
26
210
0
09 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
31
40
0
09 Feb 2023
Unsupervised Learning of Initialization in Deep Neural Networks via Maximum Mean Discrepancy
Cheolhyoung Lee
Kyunghyun Cho
25
0
0
08 Feb 2023
Generalization Bounds with Data-dependent Fractal Dimensions
Benjamin Dupuis
George Deligiannidis
Umut cSimcsekli
AI4CE
39
12
0
06 Feb 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Nicolas Le Roux
55
5
0
06 Feb 2023
Tighter Information-Theoretic Generalization Bounds from Supersamples
Ziqiao Wang
Yongyi Mao
32
17
0
05 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
On the Lipschitz Constant of Deep Networks and Double Descent
Matteo Gamba
Hossein Azizpour
Mårten Björkman
33
7
0
28 Jan 2023
Task-Agnostic Graph Neural Network Evaluation via Adversarial Collaboration
Xiangyu Zhao
Hannes Stärk
Dominique Beaini
Yiren Zhao
Pietro Lio
32
0
0
27 Jan 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
23
0
0
26 Jan 2023
ANNA: Abstractive Text-to-Image Synthesis with Filtered News Captions
Aashish Anantha Ramakrishnan
Sharon X. Huang
Dongwon Lee
29
5
0
05 Jan 2023
Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels
Yikai Wang
Yanwei Fu
Xinwei Sun
NoLa
55
8
0
02 Jan 2023
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
82
7
0
29 Dec 2022
Improving group robustness under noisy labels using predictive uncertainty
Dongpin Oh
Dae Lee
Jeunghyun Byun
Bonggun Shin
UQCV
25
3
0
14 Dec 2022
A Statistical Model for Predicting Generalization in Few-Shot Classification
Yassir Bendou
Vincent Gripon
Bastien Pasdeloup
Lukas Mauch
Stefan Uhlich
Fabien Cardinaux
G. B. Hacene
Javier Alonso García
21
2
0
13 Dec 2022
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
21
173
0
07 Dec 2022
Sources of Noise in Dialogue and How to Deal with Them
Derek Chen
Zhou Yu
29
2
0
06 Dec 2022
CrossSplit: Mitigating Label Noise Memorization through Data Splitting
Jihye Kim
A. Baratin
Yan Zhang
Simon Lacoste-Julien
NoLa
20
7
0
03 Dec 2022
Neural Representations Reveal Distinct Modes of Class Fitting in Residual Convolutional Networks
Michal Jamro.z
Marcin Kurdziel
30
0
0
01 Dec 2022
Establishment of Neural Networks Robust to Label Noise
Pengwei Yang
Angel Teng
Jack Mangos
NoLa
19
0
0
28 Nov 2022
Why Neural Networks Work
Sayan Mukherjee
Bernardo A. Huberman
19
2
0
26 Nov 2022
Learning with Silver Standard Data for Zero-shot Relation Extraction
Tianyi Wang
Jianwei Wang
Ziqian Zeng
32
2
0
25 Nov 2022
On Pitfalls of Measuring Occlusion Robustness through Data Distortion
Antonia Marcu
30
0
0
24 Nov 2022
Previous
1
2
3
4
5
6
...
19
20
21
Next