Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.07567
Cited By
Feature Importance Measure for Non-linear Learning Algorithms
22 November 2016
M. M. Vidovic
Nico Görnitz
K. Müller
Marius Kloft
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Feature Importance Measure for Non-linear Learning Algorithms"
8 / 8 papers shown
Title
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
27
12
0
09 Jun 2022
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
27
49
0
27 Aug 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
36
25
0
23 Aug 2021
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
29
31
0
16 Jun 2020
Post-hoc explanation of black-box classifiers using confident itemsets
M. Moradi
Matthias Samwald
57
98
0
05 May 2020
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
16
12
0
06 Apr 2020
ACE -- An Anomaly Contribution Explainer for Cyber-Security Applications
Xiao Zhang
Manish Marwah
I-Ta Lee
M. Arlitt
Dan Goldwasser
21
14
0
01 Dec 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1