ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.08402
  4. Cited By
Geometric deep learning on graphs and manifolds using mixture model CNNs
v1v2v3 (latest)

Geometric deep learning on graphs and manifolds using mixture model CNNs

25 November 2016
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
    GNN
ArXiv (abs)PDFHTML

Papers citing "Geometric deep learning on graphs and manifolds using mixture model CNNs"

50 / 862 papers shown
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
1.3K
3,387
0
04 Jun 2018
Dual-Primal Graph Convolutional Networks
Dual-Primal Graph Convolutional Networks
Federico Monti
Oleksandr Shchur
Aleksandar Bojchevski
Or Litany
Stephan Günnemann
M. Bronstein
GNN
161
83
0
03 Jun 2018
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
Jan Svoboda
Jonathan Masci
Federico Monti
M. Bronstein
Leonidas Guibas
AAMLGNN
166
42
0
31 May 2018
Anonymous Walk Embeddings
Anonymous Walk Embeddings
Sergey Ivanov
Evgeny Burnaev
GNN
156
188
0
30 May 2018
Adversarial Attacks on Neural Networks for Graph Data
Adversarial Attacks on Neural Networks for Graph Data
Daniel Zügner
Amir Akbarnejad
Stephan Günnemann
GNNAAMLOOD
475
1,170
0
21 May 2018
Asynchronous Convolutional Networks for Object Detection in Neuromorphic
  Cameras
Asynchronous Convolutional Networks for Object Detection in Neuromorphic Cameras
Marco Cannici
Marco Ciccone
Andrea Romanoni
Matteo Matteucci
ObjD
240
138
0
21 May 2018
Towards a Spectrum of Graph Convolutional Networks
Towards a Spectrum of Graph Convolutional Networks
Mathias Niepert
Alberto García-Durán
GNN
69
1
0
04 May 2018
NAIS-Net: Stable Deep Networks from Non-Autonomous Differential
  Equations
NAIS-Net: Stable Deep Networks from Non-Autonomous Differential EquationsNeural Information Processing Systems (NeurIPS), 2018
Marco Ciccone
Marco Gallieri
Jonathan Masci
Christian Osendorfer
Faustino J. Gomez
199
59
0
19 Apr 2018
Walk-Steered Convolution for Graph Classification
Walk-Steered Convolution for Graph Classification
Jiatao Jiang
Chunyan Xu
Zhen Cui
Tong Zhang
Chengzhen Li
Zhiqiang Wang
GNN
139
12
0
16 Apr 2018
Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
Nanyang Wang
Yinda Zhang
Zhuwen Li
Yanwei Fu
Wen Liu
Yu-Gang Jiang
3DV
323
1,420
0
05 Apr 2018
Visual Object Categorization Based on Hierarchical Shape Motifs Learned
  From Noisy Point Cloud Decompositions
Visual Object Categorization Based on Hierarchical Shape Motifs Learned From Noisy Point Cloud Decompositions
Christian A. Mueller
A. Birk
3DPC
79
3
0
03 Apr 2018
The Structure Transfer Machine Theory and Applications
The Structure Transfer Machine Theory and Applications
Baochang Zhang
Lian Zhuo
Ze Wang
Jiawei Han
Xiantong Zhen
OOD
159
6
0
01 Apr 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV3DPC
542
841
0
30 Mar 2018
Point Convolutional Neural Networks by Extension Operators
Point Convolutional Neural Networks by Extension Operators
Matan Atzmon
Haggai Maron
Y. Lipman
3DPC
163
560
0
27 Mar 2018
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal
  Graphs
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
Jiani Zhang
Xingjian Shi
Junyuan Xie
Hao Ma
Irwin King
Dit-Yan Yeung
GNN
309
616
0
20 Mar 2018
Local Spectral Graph Convolution for Point Set Feature Learning
Local Spectral Graph Convolution for Point Set Feature LearningEuropean Conference on Computer Vision (ECCV), 2018
Chu Wang
Babak Samari
Kaleem Siddiqi
3DPCGNN
184
392
0
15 Mar 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A SurveyIEEE Communications Surveys and Tutorials (COMST), 2018
Chaoyun Zhang
P. Patras
Hamed Haddadi
354
1,423
0
12 Mar 2018
Attention-based Graph Neural Network for Semi-supervised Learning
Attention-based Graph Neural Network for Semi-supervised Learning
K. K. Thekumparampil
Chong-Jun Wang
Sewoong Oh
Li Li
GNN
223
362
0
10 Mar 2018
N-body Networks: a Covariant Hierarchical Neural Network Architecture
  for Learning Atomic Potentials
N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials
Risi Kondor
AI4CE
194
111
0
05 Mar 2018
Matching Convolutional Neural Networks without Priors about Data
Matching Convolutional Neural Networks without Priors about DataData Science Workshop (DS), 2018
Carlos Lassance
Jean-Charles Vialatte
Vincent Gripon
GNNMedIm
94
6
0
27 Feb 2018
SPLATNet: Sparse Lattice Networks for Point Cloud Processing
SPLATNet: Sparse Lattice Networks for Point Cloud Processing
Hang Su
Varun Jampani
Deqing Sun
Subhransu Maji
E. Kalogerakis
Ming-Hsuan Yang
Jan Kautz
3DPC
318
779
0
22 Feb 2018
Recognizing Cuneiform Signs Using Graph Based Methods
Recognizing Cuneiform Signs Using Graph Based Methods
Nils M. Kriege
Matthias Fey
Denis Fisseler
Petra Mutzel
F. Weichert
197
36
0
16 Feb 2018
Semi-Supervised Learning on Graphs Based on Local Label Distributions
Semi-Supervised Learning on Graphs Based on Local Label Distributions
Evgheniy Faerman
Felix Borutta
Julian Busch
Matthias Schubert
186
7
0
15 Feb 2018
Graph2Seq: Scalable Learning Dynamics for Graphs
Graph2Seq: Scalable Learning Dynamics for Graphs
S. Venkatakrishnan
Mohammad Alizadeh
Pramod Viswanath
GNN
193
12
0
14 Feb 2018
Edge Attention-based Multi-Relational Graph Convolutional Networks
Chao Shang
Qinqing Liu
Ko-Shin Chen
Jiangwen Sun
Jin Lu
Jinfeng Yi
J. Bi
GNN
260
95
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
940
1,529
0
12 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
410
550
0
11 Feb 2018
MotifNet: a motif-based Graph Convolutional Network for directed graphs
MotifNet: a motif-based Graph Convolutional Network for directed graphs
Federico Monti
Karl Otness
M. Bronstein
GNN
162
148
0
04 Feb 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance
  Sampling
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
389
1,650
0
30 Jan 2018
Dynamic Graph CNN for Learning on Point Clouds
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN3DPC
862
6,936
0
24 Jan 2018
PointCNN: Convolution On $\mathcal{X}$-Transformed Points
PointCNN: Convolution On X\mathcal{X}X-Transformed Points
Yangyan Li
Rui Bu
Mingchao Sun
Wei Wu
Xinhan Di
Baoquan Chen
3DPC
710
2,750
0
23 Jan 2018
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
Yaoqing Yang
Chen Feng
Yiru Shen
Dong Tian
3DPC
191
80
0
19 Dec 2017
Mining Point Cloud Local Structures by Kernel Correlation and Graph
  Pooling
Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling
Yiru Shen
Chen Feng
Yaoqing Yang
Dong Tian
3DPC
162
33
0
19 Dec 2017
Deformable Shape Completion with Graph Convolutional Autoencoders
Deformable Shape Completion with Graph Convolutional Autoencoders
Or Litany
A. Bronstein
M. Bronstein
A. Makadia
414
235
0
01 Dec 2017
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Loic Landrieu
M. Simonovsky
GNN3DPC
459
1,368
0
27 Nov 2017
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
380
480
0
24 Nov 2017
Residual Gated Graph ConvNets
Residual Gated Graph ConvNets
Xavier Bresson
T. Laurent
GNN
330
556
0
20 Nov 2017
Learning SO(3) Equivariant Representations with Spherical CNNs
Learning SO(3) Equivariant Representations with Spherical CNNs
Carlos Esteves
Christine Allen-Blanchette
A. Makadia
Kostas Daniilidis
422
552
0
17 Nov 2017
Learning Depthwise Separable Graph Convolution from Data Manifold
Learning Depthwise Separable Graph Convolution from Data Manifold
Guokun Lai
Hanxiao Liu
Yiming Yang
128
1
0
31 Oct 2017
Graph Attention Networks
Graph Attention NetworksInternational Conference on Learning Representations (ICLR), 2017
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
3.6K
23,993
0
30 Oct 2017
Topology Adaptive Graph Convolutional Networks
Topology Adaptive Graph Convolutional Networks
Jian Du
Shanghang Zhang
Guanhang Wu
José M. F. Moura
S. Kar
GNN
386
357
0
28 Oct 2017
Learning Structural Node Embeddings Via Diffusion Wavelets
Learning Structural Node Embeddings Via Diffusion WaveletsKnowledge Discovery and Data Mining (KDD), 2017
Claire Donnat
Marinka Zitnik
David Hallac
J. Leskovec
GNNDiffM
249
423
0
27 Oct 2017
Convolutional neural networks on irregular domains based on approximate
  vertex-domain translations
Convolutional neural networks on irregular domains based on approximate vertex-domain translations
Bastien Pasdeloup
Vincent Gripon
Jean-Charles Vialatte
Dominique Pastor
P. Frossard
135
3
0
27 Oct 2017
Large Scale Graph Learning from Smooth Signals
Large Scale Graph Learning from Smooth Signals
Vassilis Kalofolias
Nathanael Perraudin
225
89
0
16 Oct 2017
A Comprehensive Survey of Graph Embedding: Problems, Techniques and
  Applications
A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
Hongyun Cai
V. Zheng
Kevin Chen-Chuan Chang
AI4TS
366
1,910
0
22 Sep 2017
Efficient Deformable Shape Correspondence via Kernel Matching
Efficient Deformable Shape Correspondence via Kernel Matching
Zorah Lähner
Matthias Vestner
A. Boyarski
Or Litany
Ron Slossberg
...
Emanuele Rodolà
A. Bronstein
M. Bronstein
Ron Kimmel
Zorah Lähner
3DPC
216
125
0
25 Jul 2017
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via
  Ranking
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
Aleksandar Bojchevski
Stephan Günnemann
BDL
572
731
0
12 Jul 2017
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
Nitika Verma
Edmond Boyer
Jakob Verbeek
3DPCGNN
172
26
0
16 Jun 2017
Learning Local Shape Descriptors from Part Correspondences With
  Multi-view Convolutional Networks
Learning Local Shape Descriptors from Part Correspondences With Multi-view Convolutional NetworksACM Transactions on Graphics (TOG), 2017
Haibin Huang
E. Kalogerakis
S. Chaudhuri
Duygu Ceylan
Vladimir G. Kim
Ersin Yumer
3DPC
212
136
0
14 Jun 2017
Learning Local Receptive Fields and their Weight Sharing Scheme on
  Graphs
Learning Local Receptive Fields and their Weight Sharing Scheme on GraphsIEEE Global Conference on Signal and Information Processing (GlobalSIP), 2017
Jean-Charles Vialatte
Vincent Gripon
G. Coppin
116
6
0
08 Jun 2017
Previous
123...161718
Next