Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.07843
Cited By
"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach
23 December 2016
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
Re-assign community
ArXiv
PDF
HTML
Papers citing
""What is Relevant in a Text Document?": An Interpretable Machine Learning Approach"
46 / 46 papers shown
Title
Path Analysis for Effective Fault Localization in Deep Neural Networks
Soroush Hashemifar
Saeed Parsa
A. Kalaee
AAML
49
0
0
28 Jan 2025
Comparison of decision trees with Local Interpretable Model-Agnostic Explanations (LIME) technique and multi-linear regression for explaining support vector regression model in terms of root mean square error (RMSE) values
Amit Thombre
FAtt
13
1
0
10 Apr 2024
Unveiling Black-boxes: Explainable Deep Learning Models for Patent Classification
Md. Shajalal
Sebastian Denef
Md. Rezaul Karim
Alexander Boden
Gunnar Stevens
XAI
24
5
0
31 Oct 2023
A New Perspective on Evaluation Methods for Explainable Artificial Intelligence (XAI)
Timo Speith
Markus Langer
31
12
0
26 Jul 2023
Neighboring Words Affect Human Interpretation of Saliency Explanations
Tim Dockhorn
Yaoliang Yu
Heike Adel
Mahdi Zolnouri
V. Nia
FAtt
MILM
38
3
0
04 May 2023
Multi-resolution Interpretation and Diagnostics Tool for Natural Language Classifiers
P. Jalali
Nengfeng Zhou
Yufei Yu
AAML
33
0
0
06 Mar 2023
Feature construction using explanations of individual predictions
Boštjan Vouk
Matej Guid
Marko Robnik-Šikonja
FAtt
27
10
0
23 Jan 2023
Optimizing Explanations by Network Canonization and Hyperparameter Search
Frederik Pahde
Galip Umit Yolcu
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
60
11
0
30 Nov 2022
An Interpretability Evaluation Benchmark for Pre-trained Language Models
Ya-Ming Shen
Lijie Wang
Ying-Cong Chen
Xinyan Xiao
Jing Liu
Hua Wu
39
4
0
28 Jul 2022
A Fine-grained Interpretability Evaluation Benchmark for Neural NLP
Lijie Wang
Yaozong Shen
Shu-ping Peng
Shuai Zhang
Xinyan Xiao
Hao Liu
Hongxuan Tang
Ying-Cong Chen
Hua Wu
Haifeng Wang
ELM
19
21
0
23 May 2022
Human Interpretation of Saliency-based Explanation Over Text
Hendrik Schuff
Alon Jacovi
Heike Adel
Yoav Goldberg
Ngoc Thang Vu
MILM
XAI
FAtt
148
39
0
27 Jan 2022
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Alon Jacovi
Jasmijn Bastings
Sebastian Gehrmann
Yoav Goldberg
Katja Filippova
36
15
0
27 Jan 2022
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
38
414
0
11 Nov 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
120
60
0
07 Nov 2021
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
19
45
0
20 Oct 2021
Awakening Latent Grounding from Pretrained Language Models for Semantic Parsing
Qian Liu
Dejian Yang
Jiahui Zhang
Jiaqi Guo
Bin Zhou
Jian-Guang Lou
51
41
0
22 Sep 2021
A Comprehensive Review on Summarizing Financial News Using Deep Learning
Saurabh Kamal
Sahil Sharma
AIFin
18
2
0
21 Sep 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
36
25
0
23 Aug 2021
Robustness Tests of NLP Machine Learning Models: Search and Semantically Replace
Rahul Singh
Karan Jindal
Yufei Yu
Hanyu Yang
Tarun Joshi
Matthew A. Campbell
Wayne B. Shoumaker
58
2
0
20 Apr 2021
Local Interpretations for Explainable Natural Language Processing: A Survey
Siwen Luo
Hamish Ivison
S. Han
Josiah Poon
MILM
43
48
0
20 Mar 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
35
63
0
18 Dec 2020
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
It's All in the Name: A Character Based Approach To Infer Religion
Rochana Chaturvedi
Sugat Chaturvedi
27
23
0
27 Oct 2020
Interpreting convolutional networks trained on textual data
Reza Marzban
Christopher Crick
FAtt
27
3
0
20 Oct 2020
SHAP values for Explaining CNN-based Text Classification Models
Wei Zhao
Tarun Joshi
V. Nair
Agus Sudjianto
FAtt
28
36
0
26 Aug 2020
Explainable Prediction of Text Complexity: The Missing Preliminaries for Text Simplification
Cristina Garbacea
Mengtian Guo
Samuel Carton
Qiaozhu Mei
19
28
0
31 Jul 2020
Towards Interpretable Deep Learning Models for Knowledge Tracing
Yu Lu
De-Wu Wang
Qinggang Meng
Penghe Chen
25
36
0
13 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
Alon Jacovi
Yoav Goldberg
XAI
43
567
0
07 Apr 2020
Ontology-based Interpretable Machine Learning for Textual Data
Phung Lai
Nhathai Phan
Han Hu
Anuja Badeti
David Newman
Dejing Dou
9
8
0
01 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Interpretability of machine learning based prediction models in healthcare
Gregor Stiglic
Primož Kocbek
Nino Fijačko
Marinka Zitnik
K. Verbert
Leona Cilar
AI4CE
35
373
0
20 Feb 2020
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
21
79
0
25 Sep 2019
Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
Robert Schwarzenberg
Marc Hübner
David Harbecke
Christoph Alt
Leonhard Hennig
FAtt
GNN
15
69
0
24 Sep 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
21
68
0
15 Jul 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
The autofeat Python Library for Automated Feature Engineering and Selection
F. Horn
R. Pack
M. Rieger
15
93
0
22 Jan 2019
Automating the search for a patent's prior art with a full text similarity search
Lea Helmers
F. Horn
Franziska Biegler
Tim Oppermann
K. Müller
24
47
0
10 Jan 2019
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
Fabian Horst
Sebastian Lapuschkin
Wojciech Samek
K. Müller
W. Schöllhorn
AI4CE
31
207
0
13 Aug 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
56
933
0
20 Jun 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos
Hugo Jair Escalante
Heysem Kaya
A. A. Salah
Sergio Escalera
Yağmur Güçlütürk
...
Furkan Gürpinar
Achmadnoer Sukma Wicaksana
Cynthia C. S. Liem
Marcel van Gerven
R. Lier
25
61
0
02 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
309
13,373
0
25 Aug 2014
1