Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1701.05369
Cited By
v1
v2
v3 (latest)
Variational Dropout Sparsifies Deep Neural Networks
International Conference on Machine Learning (ICML), 2017
19 January 2017
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Dropout Sparsifies Deep Neural Networks"
50 / 481 papers shown
Title
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
IEEE Journal on Selected Topics in Signal Processing (JSTSP), 2019
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
244
107
0
27 Jul 2019
Sparse Networks from Scratch: Faster Training without Losing Performance
Tim Dettmers
Luke Zettlemoyer
261
356
0
10 Jul 2019
Neuron ranking -- an informed way to condense convolutional neural networks architecture
Kamil Adamczewski
Mijung Park
FAtt
125
3
0
03 Jul 2019
Deep Active Learning with Adaptive Acquisition
International Joint Conference on Artificial Intelligence (IJCAI), 2019
Manuel Haussmann
Fred Hamprecht
M. Kandemir
149
41
0
27 Jun 2019
The Difficulty of Training Sparse Neural Networks
Utku Evci
Fabian Pedregosa
Aidan Gomez
Erich Elsen
283
106
0
25 Jun 2019
Learning Waveform-Based Acoustic Models using Deep Variational Convolutional Neural Networks
IEEE/ACM Transactions on Audio Speech and Language Processing (TASLP), 2019
Dino Oglic
Zoran Cvetkovic
Peter Sollich
BDL
208
8
0
23 Jun 2019
Quantifying and Leveraging Classification Uncertainty for Chest Radiograph Assessment
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019
Florin-Cristian Ghesu
Bogdan Georgescu
Eli Gibson
Sebastian Gündel
Mannudeep K. Kalra
Ramandeep Singh
S. Digumarthy
Sasa Grbic
Dorin Comaniciu
UQCV
152
52
0
18 Jun 2019
Scalable Model Compression by Entropy Penalized Reparameterization
International Conference on Learning Representations (ICLR), 2019
Deniz Oktay
Johannes Ballé
Saurabh Singh
Abhinav Shrivastava
231
46
0
15 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
AAAI Conference on Artificial Intelligence (AAAI), 2019
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
233
58
0
12 Jun 2019
The Generalization-Stability Tradeoff In Neural Network Pruning
Neural Information Processing Systems (NeurIPS), 2019
Brian Bartoldson
Ari S. Morcos
Adrian Barbu
G. Erlebacher
273
84
0
09 Jun 2019
Non-Differentiable Supervised Learning with Evolution Strategies and Hybrid Methods
Karel Lenc
Erich Elsen
Tom Schaul
Karen Simonyan
115
20
0
07 Jun 2019
Variational Resampling Based Assessment of Deep Neural Networks under Distribution Shift
IEEE Symposium Series on Computational Intelligence (SSCI), 2019
Xudong Sun
Alexej Gossmann
Yu Wang
J. Herbinger
OOD
210
5
0
07 Jun 2019
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
Neural Information Processing Systems (NeurIPS), 2019
Ari S. Morcos
Haonan Yu
Michela Paganini
Yuandong Tian
176
242
0
06 Jun 2019
Playing the lottery with rewards and multiple languages: lottery tickets in RL and NLP
International Conference on Learning Representations (ICLR), 2019
Haonan Yu
Sergey Edunov
Yuandong Tian
Ari S. Morcos
181
152
0
06 Jun 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
683
2,733
0
06 Jun 2019
NodeDrop: A Condition for Reducing Network Size without Effect on Output
Louis Jensen
Jacob A. Harer
S. Chin
95
0
0
03 Jun 2019
Bayesian Evidential Deep Learning with PAC Regularization
Manuel Haussmann
S. Gerwinn
M. Kandemir
UQCV
EDL
BDL
205
1
0
03 Jun 2019
Discovering Neural Wirings
Neural Information Processing Systems (NeurIPS), 2019
Mitchell Wortsman
Ali Farhadi
Mohammad Rastegari
AI4CE
445
127
0
03 Jun 2019
Multi-Objective Pruning for CNNs Using Genetic Algorithm
International Conference on Artificial Neural Networks (ICANN), 2019
Chuanguang Yang
Zhulin An
Chao Li
Boyu Diao
Yongjun Xu
3DPC
95
33
0
02 Jun 2019
Learning Sparse Networks Using Targeted Dropout
Aidan Gomez
Ivan Zhang
Siddhartha Rao Kamalakara
Divyam Madaan
Kevin Swersky
Y. Gal
Geoffrey E. Hinton
331
99
0
31 May 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
158
21
0
30 May 2019
Where is the Information in a Deep Neural Network?
Alessandro Achille
Giovanni Paolini
Stefano Soatto
364
90
0
29 May 2019
Accelerating Monte Carlo Bayesian Inference via Approximating Predictive Uncertainty over Simplex
Yufei Cui
Wuguannan Yao
Qiao Li
Antoni B. Chan
Chun Jason Xue
80
4
0
29 May 2019
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers
Neural Information Processing Systems (NeurIPS), 2019
Igor Fedorov
Ryan P. Adams
Matthew Mattina
P. Whatmough
216
173
0
28 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Neural Information Processing Systems (NeurIPS), 2019
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
194
16
0
27 May 2019
ShrinkTeaNet: Million-scale Lightweight Face Recognition via Shrinking Teacher-Student Networks
C. Duong
Khoa Luu
Kha Gia Quach
Ngan Le
CVBM
126
40
0
25 May 2019
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization
Computer Vision and Pattern Recognition (CVPR), 2019
S. Kwon
Dongsoo Lee
Byeongwook Kim
Parichay Kapoor
Baeseong Park
Gu-Yeon Wei
MQ
233
57
0
24 May 2019
Revisiting hard thresholding for DNN pruning
Konstantinos Pitas
Mike Davies
P. Vandergheynst
AAML
120
2
0
21 May 2019
Sparse Transfer Learning via Winning Lottery Tickets
Rahul Mehta
UQCV
120
47
0
19 May 2019
DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
MQ
168
21
0
15 May 2019
Network Pruning for Low-Rank Binary Indexing
Dongsoo Lee
S. Kwon
Byeongwook Kim
Parichay Kapoor
Gu-Yeon Wei
139
6
0
14 May 2019
BayesNAS: A Bayesian Approach for Neural Architecture Search
International Conference on Machine Learning (ICML), 2019
Hongpeng Zhou
Minghao Yang
Jun Wang
Wei Pan
BDL
250
216
0
13 May 2019
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization
International Conference on Machine Learning (ICML), 2019
Xiaohan Ding
Guiguang Ding
Yuchen Guo
Jiawei Han
C. Yan
AAML
156
133
0
12 May 2019
Training CNNs with Selective Allocation of Channels
International Conference on Machine Learning (ICML), 2019
Jongheon Jeong
Jinwoo Shin
CVBM
176
16
0
11 May 2019
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
170
165
0
25 Apr 2019
L
0
L_0
L
0
-ARM: Network Sparsification via Stochastic Binary Optimization
Yang Li
Shihao Ji
MQ
221
15
0
09 Apr 2019
How Can We Be So Dense? The Benefits of Using Highly Sparse Representations
Subutai Ahmad
Luiz Scheinkman
173
102
0
27 Mar 2019
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
A. Hubin
G. Storvik
UQCV
BDL
163
13
0
18 Mar 2019
A Brain-inspired Algorithm for Training Highly Sparse Neural Networks
Zahra Atashgahi
Joost Pieterse
Shiwei Liu
Decebal Constantin Mocanu
Raymond N. J. Veldhuis
Mykola Pechenizkiy
256
19
0
17 Mar 2019
Monotonic Gaussian Process for Spatio-Temporal Disease Progression Modeling in Brain Imaging Data
Clément Abi-Nader
N. Ayache
P. Robert
Marco Lorenzi
168
3
0
28 Feb 2019
How Large a Vocabulary Does Text Classification Need? A Variational Approach to Vocabulary Selection
North American Chapter of the Association for Computational Linguistics (NAACL), 2019
Wenhu Chen
Yu-Chuan Su
Yilin Shen
Zhiyu Zoey Chen
Xifeng Yan
Wenjie Wang
VLM
287
32
0
27 Feb 2019
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
337
830
0
25 Feb 2019
Jointly Sparse Convolutional Neural Networks in Dual Spatial-Winograd Domains
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
125
6
0
21 Feb 2019
Information Losses in Neural Classifiers from Sampling
Brandon Foggo
N. Yu
Jie Shi
Yuanqi Gao
129
7
0
15 Feb 2019
Structured Bayesian Compression for Deep models in mobile enabled devices for connected healthcare
IEEE Network (IEEE Netw.), 2019
Sijia Chen
Bin Song
Xiaojiang Du
Nadra Guizani
HAI
MedIm
49
2
0
13 Feb 2019
Gaussian Mean Field Regularizes by Limiting Learned Information
Entropy (Entropy), 2019
Julius Kunze
Louis Kirsch
H. Ritter
David Barber
FedML
MLT
151
2
0
12 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
180
21
0
07 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
631
902
0
07 Feb 2019
Compression of Recurrent Neural Networks for Efficient Language Modeling
Artem M. Grachev
D. Ignatov
Andrey V. Savchenko
151
42
0
06 Feb 2019
Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware
Shiwei Liu
Decebal Constantin Mocanu
A. R. Ramapuram Matavalam
Yulong Pei
Mykola Pechenizkiy
BDL
272
94
0
26 Jan 2019
Previous
1
2
3
...
10
7
8
9
Next