Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.08503
Cited By
SGD Learns the Conjugate Kernel Class of the Network
27 February 2017
Amit Daniely
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SGD Learns the Conjugate Kernel Class of the Network"
50 / 130 papers shown
Title
Training NTK to Generalize with KARE
Johannes Schwab
Bryan Kelly
Semyon Malamud
Teng Andrea Xu
16
0
0
16 May 2025
The Power of Random Features and the Limits of Distribution-Free Gradient Descent
Ari Karchmer
Eran Malach
26
0
0
15 May 2025
Understanding Inverse Reinforcement Learning under Overparameterization: Non-Asymptotic Analysis and Global Optimality
Ruijia Zhang
Siliang Zeng
Chenliang Li
Alfredo García
Mingyi Hong
69
0
0
22 Mar 2025
SHAP values via sparse Fourier representation
Ali Gorji
Andisheh Amrollahi
A. Krause
FAtt
38
0
0
08 Oct 2024
Neural Lineage
Runpeng Yu
Xinchao Wang
40
4
0
17 Jun 2024
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
34
0
0
24 May 2024
Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks
Adeyemi Damilare Adeoye
Philipp Christian Petersen
Alberto Bemporad
30
1
0
23 Apr 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
44
3
0
19 Mar 2024
RedEx: Beyond Fixed Representation Methods via Convex Optimization
Amit Daniely
Mariano Schain
Gilad Yehudai
27
0
0
15 Jan 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
21
0
0
08 Jan 2024
Applying statistical learning theory to deep learning
Cédric Gerbelot
Avetik G. Karagulyan
Stefani Karp
Kavya Ravichandran
Menachem Stern
Nathan Srebro
FedML
24
2
0
26 Nov 2023
Is Solving Graph Neural Tangent Kernel Equivalent to Training Graph Neural Network?
Lianke Qin
Zhao Song
Baocheng Sun
25
7
0
14 Sep 2023
A faster and simpler algorithm for learning shallow networks
Sitan Chen
Shyam Narayanan
41
7
0
24 Jul 2023
What can a Single Attention Layer Learn? A Study Through the Random Features Lens
Hengyu Fu
Tianyu Guo
Yu Bai
Song Mei
MLT
40
22
0
21 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
44
1
0
03 Jul 2023
The
L
∞
L^\infty
L
∞
Learnability of Reproducing Kernel Hilbert Spaces
Hongrui Chen
Jihao Long
Lei Wu
22
0
0
05 Jun 2023
Most Neural Networks Are Almost Learnable
Amit Daniely
Nathan Srebro
Gal Vardi
31
0
0
25 May 2023
A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree Spectral Bias of Neural Networks
Ali Gorji
Andisheh Amrollahi
A. Krause
19
4
0
16 May 2023
Efficient Asynchronize Stochastic Gradient Algorithm with Structured Data
Zhao Song
Mingquan Ye
32
4
0
13 May 2023
On the average-case complexity of learning output distributions of quantum circuits
A. Nietner
M. Ioannou
R. Sweke
R. Kueng
Jens Eisert
M. Hinsche
J. Haferkamp
36
11
0
09 May 2023
Learning Narrow One-Hidden-Layer ReLU Networks
Sitan Chen
Zehao Dou
Surbhi Goel
Adam R. Klivans
Raghu Meka
MLT
27
13
0
20 Apr 2023
Solving Regularized Exp, Cosh and Sinh Regression Problems
Zhihang Li
Zhao Song
Dinesh Manocha
36
39
0
28 Mar 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
35
19
0
13 Feb 2023
Deep Reinforcement Learning for Traffic Light Control in Intelligent Transportation Systems
Xiao-Yang Liu
Ming Zhu
S. Borst
A. Elwalid
40
8
0
04 Feb 2023
Gradient Descent in Neural Networks as Sequential Learning in RKBS
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
MLT
19
1
0
01 Feb 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
25
0
0
26 Jan 2023
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Vision Transformers provably learn spatial structure
Samy Jelassi
Michael E. Sander
Yuan-Fang Li
ViT
MLT
34
75
0
13 Oct 2022
Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm
Lechao Xiao
Jeffrey Pennington
45
10
0
11 Jul 2022
Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling
Hongkang Li
Ming Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
GNN
16
27
0
07 Jul 2022
Optimal Activation Functions for the Random Features Regression Model
Jianxin Wang
José Bento
39
3
0
31 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
199
128
0
19 May 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
59
23
0
18 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
38
7
0
15 May 2022
Learning Neural Contextual Bandits Through Perturbed Rewards
Yiling Jia
Weitong Zhang
Dongruo Zhou
Quanquan Gu
Hongning Wang
13
13
0
24 Jan 2022
Learning Neural Ranking Models Online from Implicit User Feedback
Yiling Jia
Hongning Wang
16
6
0
17 Jan 2022
Generalization Performance of Empirical Risk Minimization on Over-parameterized Deep ReLU Nets
Shao-Bo Lin
Yao Wang
Ding-Xuan Zhou
ODL
26
6
0
28 Nov 2021
What Happens after SGD Reaches Zero Loss? --A Mathematical Framework
Zhiyuan Li
Tianhao Wang
Sanjeev Arora
MLT
90
99
0
13 Oct 2021
A spectral-based analysis of the separation between two-layer neural networks and linear methods
Lei Wu
Jihao Long
26
8
0
10 Aug 2021
Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations
Pranjal Awasthi
Alex K. Tang
Aravindan Vijayaraghavan
MLT
26
20
0
21 Jul 2021
Nonlinear Weighted Directed Acyclic Graph and A Priori Estimates for Neural Networks
Yuqing Li
Yaoyu Zhang
Chao Ma
CML
18
1
0
30 Mar 2021
Recent Advances in Large Margin Learning
Yiwen Guo
Changshui Zhang
AAML
AI4CE
36
13
0
25 Mar 2021
Double-descent curves in neural networks: a new perspective using Gaussian processes
Ouns El Harzli
Bernardo Cuenca Grau
Guillermo Valle Pérez
A. Louis
22
6
0
14 Feb 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
53
48
0
24 Jan 2021
Implicit Bias of Linear RNNs
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
20
11
0
19 Jan 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
20
18
0
15 Jan 2021
Infinitely Wide Tensor Networks as Gaussian Process
Erdong Guo
D. Draper
19
2
0
07 Jan 2021
Mathematical Models of Overparameterized Neural Networks
Cong Fang
Hanze Dong
Tong Zhang
37
22
0
27 Dec 2020
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
62
357
0
17 Dec 2020
Towards NNGP-guided Neural Architecture Search
Daniel S. Park
Jaehoon Lee
Daiyi Peng
Yuan Cao
Jascha Narain Sohl-Dickstein
BDL
26
33
0
11 Nov 2020
1
2
3
Next