Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 167 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
62
0
0
26 Feb 2025
Attribute Inference Attacks for Federated Regression Tasks
Francesco Diana
Othmane Marfoq
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
204
1
0
19 Nov 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
150
0
0
10 Oct 2024
Automatically Adaptive Conformal Risk Control
Vincent Blot
Anastasios Nikolas Angelopoulos
Michael I Jordan
Nicolas Brunel
AI4CE
44
2
0
25 Jun 2024
3D Gaussian Splatting as Markov Chain Monte Carlo
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Weiwei Sun
Jeff Tseng
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
3DGS
50
49
0
15 Apr 2024
Training-set-free two-stage deep learning for spectroscopic data de-noising
Dongchen Huang
Junde Liu
Tian Qian
Hongming Weng
36
0
0
29 Feb 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
45
0
0
08 Feb 2024
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
42
2
0
20 Nov 2023
Neural Collapse in Multi-label Learning with Pick-all-label Loss
Pengyu Li
Xiao Li
Yutong Wang
Qing Qu
30
8
0
24 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
35
11
0
03 Oct 2023
Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
Yossi Arjevani
Gal Vinograd
31
5
0
13 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
32
6
0
25 May 2023
Stability and Convergence of Distributed Stochastic Approximations with large Unbounded Stochastic Information Delays
Adrian Redder
Arunselvan Ramaswamy
Holger Karl
20
1
0
11 May 2023
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning
Yulai Zhao
Zhuoran Yang
Zhaoran Wang
Jason D. Lee
43
3
0
08 May 2023
Learning Rate Schedules in the Presence of Distribution Shift
Matthew Fahrbach
Adel Javanmard
Vahab Mirrokni
Pratik Worah
24
6
0
27 Mar 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
27
12
0
20 Feb 2023
Almost Sure Saddle Avoidance of Stochastic Gradient Methods without the Bounded Gradient Assumption
Jun Liu
Ye Yuan
ODL
16
1
0
15 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
29
1
0
28 Jan 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurelien Lucchi
23
13
0
19 Jan 2023
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
31
28
0
28 Dec 2022
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
21
0
0
17 Nov 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
35
1
0
17 Nov 2022
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
49
6
0
02 Nov 2022
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points
R. Tappenden
Martin Takáč
15
0
0
02 Nov 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
32
2
0
28 Oct 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
167
68
0
27 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
24
17
0
29 Sep 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
25
41
0
19 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
24
10
0
24 Aug 2022
CoShNet: A Hybrid Complex Valued Neural Network using Shearlets
Manny Ko
Ujjawal K. Panchal
Héctor Andrade-Loarca
Andres Mendez-Vazquez
27
1
0
14 Aug 2022
A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random Perturbations for Stochastic Optimization
Akash Mondal
A. PrashanthL.
S. Bhatnagar
17
2
0
30 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
30
9
0
05 Jul 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
50
23
0
07 Jun 2022
Subspace Phase Retrieval
Meng Xu
Dekuan Dong
J. Wang
19
2
0
06 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
14
8
0
30 May 2022
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
30
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
25
5
0
24 May 2022
Estimation and Inference by Stochastic Optimization
Jean-Jacques Forneron
22
5
0
06 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
27
7
0
05 May 2022
Gradient Descent, Stochastic Optimization, and Other Tales
Jun Lu
14
8
0
02 May 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
27
11
0
29 Apr 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Understanding Contrastive Learning Requires Incorporating Inductive Biases
Nikunj Saunshi
Jordan T. Ash
Surbhi Goel
Dipendra Kumar Misra
Cyril Zhang
Sanjeev Arora
Sham Kakade
A. Krishnamurthy
SSL
24
109
0
28 Feb 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
28
8
0
18 Feb 2022
1
2
3
4
Next