Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 167 papers shown
Title
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably
Tianyi Liu
Yan Li
Enlu Zhou
Tuo Zhao
38
1
0
07 Feb 2022
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the
O
(
ε
−
7
/
4
)
O(ε^{-7/4})
O
(
ε
−
7/4
)
Complexity
Huan Li
Zhouchen Lin
42
21
0
27 Jan 2022
Differentially Private Temporal Difference Learning with Stochastic Nonconvex-Strongly-Concave Optimization
Canzhe Zhao
Yanjie Ze
Jing Dong
Baoxiang Wang
Shuai Li
47
4
0
25 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
34
8
0
09 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
28
15
0
28 Nov 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
43
416
0
24 Nov 2021
Learning equilibria with personalized incentives in a class of nonmonotone games
F. Fabiani
Andrea Simonetto
Paul Goulart
22
11
0
06 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
40
1
0
25 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
41
11
0
06 Oct 2021
On the Estimation Bias in Double Q-Learning
Zhizhou Ren
Guangxiang Zhu
Haotian Hu
Beining Han
Jian-Hai Chen
Chongjie Zhang
24
17
0
29 Sep 2021
Concave Utility Reinforcement Learning with Zero-Constraint Violations
Mridul Agarwal
Qinbo Bai
Vaneet Aggarwal
36
12
0
12 Sep 2021
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility
Liyun Tu
Austin Talbot
Neil Gallagher
David Carlson
DRL
32
2
0
09 Sep 2021
Coordinate Descent Methods for DC Minimization: Optimality Conditions and Global Convergence
Ganzhao Yuan
30
3
0
09 Sep 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
30
9
0
03 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Distributed stochastic optimization with large delays
Zhengyuan Zhou
P. Mertikopoulos
Nicholas Bambos
Peter Glynn
Yinyu Ye
20
9
0
06 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
21
46
0
27 Jun 2021
A Survey on Fault-tolerance in Distributed Optimization and Machine Learning
Shuo Liu
AI4CE
OOD
50
13
0
16 Jun 2021
Unique sparse decomposition of low rank matrices
Dian Jin
Xin Bing
Yuqian Zhang
19
4
0
14 Jun 2021
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
32
95
0
08 Jun 2021
Smooth Bilevel Programming for Sparse Regularization
C. Poon
Gabriel Peyré
11
18
0
02 Jun 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
19
4
0
21 May 2021
Sharp Restricted Isometry Property Bounds for Low-rank Matrix Recovery Problems with Corrupted Measurements
Ziye Ma
Yingjie Bi
Javad Lavaei
Somayeh Sojoudi
26
14
0
18 May 2021
Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis
Zezhong Zhang
Guangxu Zhu
Rui-cang Wang
Vincent K. N. Lau
Kaibin Huang
33
31
0
20 Apr 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
27
29
0
31 Mar 2021
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
44
78
0
24 Feb 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
13
7
0
12 Feb 2021
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
26
1
0
07 Jan 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
42
29
0
13 Jul 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
84
53
0
24 Jun 2020
On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems
P. Mertikopoulos
Nadav Hallak
Ali Kavis
V. Cevher
21
85
0
19 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
27
50
0
11 Jun 2020
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
16
273
0
01 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
115
0
18 May 2020
Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model
Z. Fan
Yi Sun
Tianhao Wang
Yihong Wu
30
18
0
31 Mar 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
Columnwise Element Selection for Computationally Efficient Nonnegative Coupled Matrix Tensor Factorization
Thirunavukarasu Balasubramaniam
R. Nayak
Chau Yuen
8
7
0
07 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
20
1,391
0
29 Feb 2020
First Order Methods take Exponential Time to Converge to Global Minimizers of Non-Convex Functions
Krishna Reddy Kesari
Jean Honorio
6
1
0
28 Feb 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
14
5
0
27 Feb 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
37
9
0
07 Feb 2020
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
24
10
0
04 Feb 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
22
21
0
23 Jan 2020
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning
Yining Qi
Zhihao Qu
Song Guo
Xin Gao
Ruixuan Li
Baoliu Ye
FedML
18
8
0
22 Jan 2020
Previous
1
2
3
4
Next