Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 167 papers shown
Title
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
20
9
0
05 Dec 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Quantum algorithm for finding the negative curvature direction in non-convex optimization
Kaining Zhang
Min-hsiu Hsieh
Liu Liu
Dacheng Tao
13
3
0
17 Sep 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
19
844
0
10 Sep 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
17
29
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
29
161
0
25 Aug 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
23
21
0
19 Aug 2019
Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
Senwei Liang
Zhongzhan Huang
Mingfu Liang
Haizhao Yang
30
57
0
12 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
11
316
0
01 Aug 2019
Hyperlink Regression via Bregman Divergence
Akifumi Okuno
Hidetoshi Shimodaira
33
6
0
22 Jul 2019
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I
Sandeep Kumar
K. Rajawat
Daniel P. Palomar
19
4
0
21 Jul 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
21
53
0
03 Jul 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kaipeng Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
41
186
0
19 Jun 2019
On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu
Wenqing Hu
Haoyi Xiong
Jun Huan
Vladimir Braverman
Zhanxing Zhu
MLT
24
10
0
18 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
37
185
0
05 Jun 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization
Baojian Zhou
F. Chen
Yiming Ying
26
7
0
09 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
25
30
0
18 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
22
147
0
02 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
37
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
21
94
0
24 Jan 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
29
3
0
21 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
14
71
0
02 Jan 2019
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
9
59
0
12 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
41
1,122
0
09 Nov 2018
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric P. Xing
26
41
0
17 Oct 2018
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
22
34
0
08 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
38
1,250
0
04 Oct 2018
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
32
291
0
07 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
44
570
0
04 Jul 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
27
66
0
26 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
29
97
0
14 Jun 2018
Structured Local Optima in Sparse Blind Deconvolution
Yuqian Zhang
Han-Wen Kuo
John N. Wright
24
56
0
01 Jun 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
25
17
0
20 May 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
18
36
0
13 May 2018
On Gradient-Based Learning in Continuous Games
Eric Mazumdar
Lillian J. Ratliff
S. Shankar Sastry
8
134
0
16 Apr 2018
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law
Max Simchowitz
A. Alaoui
Benjamin Recht
27
38
0
04 Apr 2018
Bayesian Optimization with Expensive Integrands
Saul Toscano-Palmerin
P. Frazier
13
49
0
23 Mar 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
21
161
0
15 Mar 2018
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang
S. Du
Quanquan Gu
26
24
0
03 Mar 2018
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Srinadh Bhojanapalli
Nicolas Boumal
Prateek Jain
Praneeth Netrapalli
23
42
0
01 Mar 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
35
46
0
20 Feb 2018
Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator
Maryam Fazel
Rong Ge
Sham Kakade
M. Mesbahi
35
598
0
15 Jan 2018
Previous
1
2
3
4
Next