ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04782
  4. Cited By
Online Learning Rate Adaptation with Hypergradient Descent
v1v2v3 (latest)

Online Learning Rate Adaptation with Hypergradient Descent

14 March 2017
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
    ODL
ArXiv (abs)PDFHTML

Papers citing "Online Learning Rate Adaptation with Hypergradient Descent"

43 / 143 papers shown
Title
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
MLR-SNet: Transferable LR Schedules for Heterogeneous TasksIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
267
8
0
29 Jul 2020
La-MAML: Look-ahead Meta Learning for Continual Learning
La-MAML: Look-ahead Meta Learning for Continual LearningNeural Information Processing Systems (NeurIPS), 2020
Gunshi Gupta
Karmesh Yadav
Liam Paull
CLLVLM
271
80
0
27 Jul 2020
Gradient-based Hyperparameter Optimization Over Long Horizons
Gradient-based Hyperparameter Optimization Over Long HorizonsNeural Information Processing Systems (NeurIPS), 2020
P. Micaelli
Amos Storkey
253
17
0
15 Jul 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian
  Optimisation
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
108
2
0
25 Jun 2020
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage
  Trees
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage Trees
Ahnjae Shin
Do Yoon Kim
Joo Seong Jeong
Byung-Gon Chun
132
5
0
22 Jun 2020
AdaS: Adaptive Scheduling of Stochastic Gradients
AdaS: Adaptive Scheduling of Stochastic Gradients
Mahdi S. Hosseini
Konstantinos N. Plataniotis
ODL
126
12
0
11 Jun 2020
AutoHAS: Efficient Hyperparameter and Architecture Search
AutoHAS: Efficient Hyperparameter and Architecture Search
Xuanyi Dong
Mingxing Tan
Adams Wei Yu
Daiyi Peng
Bogdan Gabrys
Quoc V. Le
TPM
146
24
0
05 Jun 2020
Generalized Reinforcement Meta Learning for Few-Shot Optimization
Generalized Reinforcement Meta Learning for Few-Shot Optimization
R. Anantha
S. Pulman
Srinivas Chappidi
OffRL
82
3
0
04 May 2020
Balancing Training for Multilingual Neural Machine Translation
Balancing Training for Multilingual Neural Machine TranslationAnnual Meeting of the Association for Computational Linguistics (ACL), 2020
Xinyi Wang
Yulia Tsvetkov
Graham Neubig
372
110
0
14 Apr 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A SurveyIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
641
2,334
0
11 Apr 2020
Meta Pseudo Labels
Meta Pseudo LabelsComputer Vision and Pattern Recognition (CVPR), 2020
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
904
727
0
23 Mar 2020
Is the Meta-Learning Idea Able to Improve the Generalization of Deep
  Neural Networks on the Standard Supervised Learning?
Is the Meta-Learning Idea Able to Improve the Generalization of Deep Neural Networks on the Standard Supervised Learning?International Conference on Pattern Recognition (ICPR), 2020
Xiang Deng
Zhongfei Zhang
AI4CE
94
5
0
27 Feb 2020
Statistical Adaptive Stochastic Gradient Methods
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
167
12
0
25 Feb 2020
Stage-based Hyper-parameter Optimization for Deep Learning
Stage-based Hyper-parameter Optimization for Deep Learning
Ahnjae Shin
Dongjin Shin
Sungwoo Cho
Do Yoon Kim
Eunji Jeong
Gyeong-In Yu
Byung-Gon Chun
80
4
0
24 Nov 2019
Optimizing Data Usage via Differentiable Rewards
Optimizing Data Usage via Differentiable RewardsInternational Conference on Machine Learning (ICML), 2019
Xinyi Wang
Hieu H. Pham
Paul Michel
Antonios Anastasopoulos
J. Carbonell
Graham Neubig
339
66
0
22 Nov 2019
A Simple Dynamic Learning Rate Tuning Algorithm For Automated Training
  of DNNs
A Simple Dynamic Learning Rate Tuning Algorithm For Automated Training of DNNs
Koyel Mukherjee
Alind Khare
Ashish Verma
143
20
0
25 Oct 2019
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
Michele Donini
Luca Franceschi
Massimiliano Pontil
Orchid Majumder
P. Frasconi
109
7
0
18 Oct 2019
First-Order Preconditioning via Hypergradient Descent
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
150
10
0
18 Oct 2019
On the adequacy of untuned warmup for adaptive optimization
On the adequacy of untuned warmup for adaptive optimizationAAAI Conference on Artificial Intelligence (AAAI), 2019
Jerry Ma
Denis Yarats
282
79
0
09 Oct 2019
Gradient Descent: The Ultimate Optimizer
Gradient Descent: The Ultimate OptimizerNeural Information Processing Systems (NeurIPS), 2019
Kartik Chandra
Audrey Xie
Jonathan Ragan-Kelley
E. Meijer
ODL
154
0
0
29 Sep 2019
Using Statistics to Automate Stochastic Optimization
Using Statistics to Automate Stochastic OptimizationNeural Information Processing Systems (NeurIPS), 2019
Hunter Lang
Pengchuan Zhang
Lin Xiao
128
24
0
21 Sep 2019
Learning an Adaptive Learning Rate Schedule
Learning an Adaptive Learning Rate Schedule
Zhen Xu
Andrew M. Dai
Jonas Kemp
Luke Metz
115
71
0
20 Sep 2019
Adaptive Scheduling for Multi-Task Learning
Adaptive Scheduling for Multi-Task Learning
Sébastien Jean
Orhan Firat
Melvin Johnson
140
46
0
13 Sep 2019
Meta-descent for Online, Continual Prediction
Meta-descent for Online, Continual PredictionAAAI Conference on Artificial Intelligence (AAAI), 2019
Andrew Jacobsen
M. Schlegel
Cam Linke
T. Degris
Adam White
Martha White
165
24
0
17 Jul 2019
Massively Multilingual Neural Machine Translation in the Wild: Findings
  and Challenges
Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges
N. Arivazhagan
Ankur Bapna
Orhan Firat
Dmitry Lepikhin
Melvin Johnson
...
George F. Foster
Colin Cherry
Wolfgang Macherey
Zhiwen Chen
Yonghui Wu
211
447
0
11 Jul 2019
Accelerating Mini-batch SARAH by Step Size Rules
Accelerating Mini-batch SARAH by Step Size RulesInformation Sciences (Inf. Sci.), 2019
Zhuang Yang
Zengping Chen
Cheng-Yu Wang
194
15
0
20 Jun 2019
Training Neural Networks for and by Interpolation
Training Neural Networks for and by InterpolationInternational Conference on Machine Learning (ICML), 2019
Leonard Berrada
Andrew Zisserman
M. P. Kumar
3DH
161
68
0
13 Jun 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence RatesNeural Information Processing Systems (NeurIPS), 2019
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Damien Scieur
ODL
360
226
0
24 May 2019
Alpha MAML: Adaptive Model-Agnostic Meta-Learning
Alpha MAML: Adaptive Model-Agnostic Meta-Learning
Harkirat Singh Behl
A. G. Baydin
Juil Sock
148
70
0
17 May 2019
Parabolic Approximation Line Search for DNNs
Parabolic Approximation Line Search for DNNs
Max Mutschler
A. Zell
ODL
255
20
0
28 Mar 2019
Block stochastic gradient descent for large-scale tomographic
  reconstruction in a parallel network
Block stochastic gradient descent for large-scale tomographic reconstruction in a parallel network
Yushan Gao
A. Biguri
T. Blumensath
152
3
0
28 Mar 2019
Online Meta-Learning
Online Meta-Learning
Chelsea Finn
Aravind Rajeswaran
Sham Kakade
Sergey Levine
CLL
225
288
0
22 Feb 2019
Meta-Curvature
Meta-CurvatureNeural Information Processing Systems (NeurIPS), 2019
Eunbyung Park
Junier B. Oliva
BDL
333
132
0
09 Feb 2019
Surrogate Losses for Online Learning of Stepsizes in Stochastic
  Non-Convex Optimization
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
Zhenxun Zhuang
Ashok Cutkosky
Francesco Orabona
246
5
0
25 Jan 2019
Deep Frank-Wolfe For Neural Network Optimization
Deep Frank-Wolfe For Neural Network OptimizationInternational Conference on Learning Representations (ICLR), 2018
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
167
41
0
19 Nov 2018
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
314
296
0
25 Oct 2018
Quasi-hyperbolic momentum and Adam for deep learning
Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma
Denis Yarats
ODL
341
144
0
16 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
205
111
0
09 Oct 2018
Learning with Random Learning Rates
Learning with Random Learning Rates
Léonard Blier
Pierre Wolinski
Yann Ollivier
OOD
233
21
0
02 Oct 2018
Guided evolutionary strategies: Augmenting random search with surrogate
  gradients
Guided evolutionary strategies: Augmenting random search with surrogate gradients
Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Narain Sohl-Dickstein
233
22
0
26 Jun 2018
L4: Practical loss-based stepsize adaptation for deep learning
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
270
65
0
14 Feb 2018
Online Learning of a Memory for Learning Rates
Online Learning of a Memory for Learning Rates
Franziska Meier
Daniel Kappler
S. Schaal
96
21
0
20 Sep 2017
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
434
3,215
0
20 Feb 2015
Previous
123