ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04782
  4. Cited By
Online Learning Rate Adaptation with Hypergradient Descent
v1v2v3 (latest)

Online Learning Rate Adaptation with Hypergradient Descent

14 March 2017
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
    ODL
ArXiv (abs)PDFHTML

Papers citing "Online Learning Rate Adaptation with Hypergradient Descent"

50 / 143 papers shown
Title
Learning to Optimize Quasi-Newton Methods
Learning to Optimize Quasi-Newton Methods
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
211
4
0
11 Oct 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Haiyan Zhao
Jinhui Xu
284
1
0
03 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
234
82
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive BiasesNeural Information Processing Systems (NeurIPS), 2022
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
196
28
0
22 Sep 2022
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Learning Symbolic Model-Agnostic Loss Functions via Meta-LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
187
14
0
19 Sep 2022
Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence
  Models
Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence Models
Jared Lichtarge
Chris Alberti
Shankar Kumar
190
5
0
10 Sep 2022
Online Meta-Learning for Model Update Aggregation in Federated Learning
  for Click-Through Rate Prediction
Online Meta-Learning for Model Update Aggregation in Federated Learning for Click-Through Rate Prediction
Xianghang Liu
Bartlomiej Twardowski
Tri Kurniawan Wijaya
FedML
140
3
0
30 Aug 2022
Betty: An Automatic Differentiation Library for Multilevel Optimization
Betty: An Automatic Differentiation Library for Multilevel OptimizationInternational Conference on Learning Representations (ICLR), 2022
Sang Keun Choe
Willie Neiswanger
P. Xie
Eric P. Xing
AI4CE
204
36
0
05 Jul 2022
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Aaron Defazio
Baoyu Zhou
Lin Xiao
ODL
149
7
0
14 Jun 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm ConfigurationJournal of Artificial Intelligence Research (JAIR), 2022
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Katharina Eggensperger
241
47
0
27 May 2022
DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
  Medical Images
DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain Medical ImagesIEEE Transactions on Medical Imaging (IEEE TMI), 2022
Hongzheng Yang
Cheng Chen
Meirui Jiang
Quande Liu
Jianfeng Cao
Pheng Ann Heng
Qi Dou
OOD
123
37
0
27 May 2022
Hyper-Learning for Gradient-Based Batch Size Adaptation
Hyper-Learning for Gradient-Based Batch Size Adaptation
Calum MacLellan
Feng Dong
97
0
0
17 May 2022
Learning to Accelerate by the Methods of Step-size Planning
Learning to Accelerate by the Methods of Step-size Planning
Hengshuai Yao
291
0
0
01 Apr 2022
Exploiting Explainable Metrics for Augmented SGD
Exploiting Explainable Metrics for Augmented SGDComputer Vision and Pattern Recognition (CVPR), 2022
Mahdi S. Hosseini
Mathieu Tuli
Konstantinos N. Plataniotis
AAML
128
3
0
31 Mar 2022
Optimizer Amalgamation
Optimizer AmalgamationInternational Conference on Learning Representations (ICLR), 2022
Tianshu Huang
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zinan Lin
MoMe
187
5
0
12 Mar 2022
Amortized Proximal Optimization
Amortized Proximal OptimizationNeural Information Processing Systems (NeurIPS), 2022
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
277
15
0
28 Feb 2022
Step-size Adaptation Using Exponentiated Gradient Updates
Step-size Adaptation Using Exponentiated Gradient Updates
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
140
9
0
31 Jan 2022
A Stochastic Bundle Method for Interpolating Networks
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
166
6
0
29 Jan 2022
DDG-DA: Data Distribution Generation for Predictable Concept Drift
  Adaptation
DDG-DA: Data Distribution Generation for Predictable Concept Drift AdaptationAAAI Conference on Artificial Intelligence (AAAI), 2022
Wendi Li
Xiao Yang
Yuante Li
Ziheng Lu
Jiang Bian
DiffMAI4TS
239
70
0
11 Jan 2022
A Theoretical Understanding of Gradient Bias in Meta-Reinforcement
  Learning
A Theoretical Understanding of Gradient Bias in Meta-Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2021
Xidong Feng
Bo Liu
Jie Ren
Luo Mai
Rui Zhu
Haifeng Zhang
Jun Wang
Yaodong Yang
206
12
0
31 Dec 2021
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution StrategiesInternational Conference on Machine Learning (ICML), 2021
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
199
74
0
27 Dec 2021
Meta Propagation Networks for Graph Few-shot Semi-supervised Learning
Meta Propagation Networks for Graph Few-shot Semi-supervised LearningAAAI Conference on Artificial Intelligence (AAAI), 2021
Kaize Ding
Jianling Wang
James Caverlee
Huan Liu
SSL
219
50
0
18 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
308
30
0
16 Dec 2021
AutoDrop: Training Deep Learning Models with Automatic Learning Rate
  Drop
AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop
Yunfei Teng
Jing Wang
A. Choromańska
221
2
0
30 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
279
9
0
20 Oct 2021
Learning by Examples Based on Multi-level Optimization
Learning by Examples Based on Multi-level Optimization
Shentong Mo
P. Xie
129
0
0
22 Sep 2021
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
  Information
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
Majid Jahani
S. Rusakov
Zheng Shi
Peter Richtárik
Michael W. Mahoney
Martin Takávc
ODL
142
29
0
11 Sep 2021
Using a one dimensional parabolic model of the full-batch loss to
  estimate learning rates during training
Using a one dimensional parabolic model of the full-batch loss to estimate learning rates during training
Max Mutschler
Kevin Laube
A. Zell
ODL
100
1
0
31 Aug 2021
Automated Learning Rate Scheduler for Large-batch Training
Automated Learning Rate Scheduler for Large-batch Training
Chiheon Kim
Saehoon Kim
Jongmin Kim
Donghoon Lee
Sungwoong Kim
114
21
0
13 Jul 2021
Learning an Explicit Hyperparameter Prediction Function Conditioned on
  Tasks
Learning an Explicit Hyperparameter Prediction Function Conditioned on Tasks
Jun Shu
Deyu Meng
Zongben Xu
169
11
0
06 Jul 2021
Adaptive Learning Rate and Momentum for Training Deep Neural Networks
Adaptive Learning Rate and Momentum for Training Deep Neural Networks
Zhiyong Hao
Yixuan Jiang
Huihua Yu
H. Chiang
ODL
85
14
0
22 Jun 2021
Graph Contrastive Learning Automated
Graph Contrastive Learning AutomatedInternational Conference on Machine Learning (ICML), 2021
Yuning You
Tianlong Chen
Yang Shen
Zinan Lin
202
565
0
10 Jun 2021
BERT Learns to Teach: Knowledge Distillation with Meta Learning
BERT Learns to Teach: Knowledge Distillation with Meta LearningAnnual Meeting of the Association for Computational Linguistics (ACL), 2021
Wangchunshu Zhou
Canwen Xu
Julian McAuley
211
102
0
08 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
206
33
0
02 Jun 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on
  the Fly
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the FlyInternational Conference on Learning Representations (ICLR), 2021
Yuchen Jin
Wanrong Zhu
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
166
23
0
22 May 2021
AngularGrad: A New Optimization Technique for Angular Convergence of
  Convolutional Neural Networks
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
S. K. Roy
Mercedes Eugenia Paoletti
J. Haut
S. Dubey
Purushottam Kar
A. Plaza
B. B. Chaudhuri
ODL
191
20
0
21 May 2021
Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
  in Gradient Descent
Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate in Gradient Descent
Guangzeng Xie
Hao Jin
Dachao Lin
Zhihua Zhang
115
0
0
12 Apr 2021
Robust MAML: Prioritization task buffer with adaptive learning process
  for model-agnostic meta-learning
Robust MAML: Prioritization task buffer with adaptive learning process for model-agnostic meta-learningIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Thanh Nguyen
Tung M. Luu
T. Pham
Sanzhar Rakhimkul
Chang D. Yoo
110
16
0
15 Mar 2021
Population-Based Evolution Optimizes a Meta-Learning Objective
Population-Based Evolution Optimizes a Meta-Learning Objective
Kevin Frans
Olaf Witkowski
178
6
0
11 Mar 2021
A Probabilistically Motivated Learning Rate Adaptation for Stochastic
  Optimization
A Probabilistically Motivated Learning Rate Adaptation for Stochastic Optimization
Filip de Roos
Carl Jidling
A. Wills
Thomas B. Schon
Philipp Hennig
92
3
0
22 Feb 2021
Meta Back-translation
Meta Back-translationInternational Conference on Learning Representations (ICLR), 2021
Hieu H. Pham
Xinyi Wang
Yiming Yang
Graham Neubig
140
26
0
15 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and BeyondIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
408
257
0
27 Jan 2021
Joint Search of Data Augmentation Policies and Network Architectures
Joint Search of Data Augmentation Policies and Network Architectures
Taiga Kashima
Yoshihiro Yamada
Shunta Saito
3DPC
171
5
0
17 Dec 2020
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation
Gengwei Zhang
Yiming Gao
Hang Xu
Hao Zhang
Zhenguo Li
Xiaodan Liang
SSeg
291
5
0
07 Dec 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
167
6
0
09 Nov 2020
On Negative Interference in Multilingual Models: Findings and A
  Meta-Learning Treatment
On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment
Zirui Wang
Zachary Chase Lipton
Yulia Tsvetkov
155
32
0
06 Oct 2020
A straightforward line search approach on the expected empirical loss
  for stochastic deep learning problems
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
169
0
0
02 Oct 2020
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical
  Guarantee
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee
Junyi Li
Bin Gu
Heng-Chiao Huang
152
42
0
01 Sep 2020
learn2learn: A Library for Meta-Learning Research
learn2learn: A Library for Meta-Learning Research
Sébastien M. R. Arnold
Praateek Mahajan
Debajyoti Datta
Ian Bunner
Konstantinos Saitas Zarkias
261
105
0
27 Aug 2020
Adaptive Hierarchical Hyper-gradient Descent
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
102
5
0
17 Aug 2020
Previous
123
Next