ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06114
  4. Cited By
Deep Sets
v1v2v3 (latest)

Deep Sets

10 March 2017
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
ArXiv (abs)PDFHTML

Papers citing "Deep Sets"

50 / 1,556 papers shown
SAL: Sign Agnostic Learning of Shapes from Raw Data
SAL: Sign Agnostic Learning of Shapes from Raw DataComputer Vision and Pattern Recognition (CVPR), 2019
Matan Atzmon
Y. Lipman
3DPCFedML
460
571
0
23 Nov 2019
Spotting insects from satellites: modeling the presence of Culicoides
  imicola through Deep CNNs
Spotting insects from satellites: modeling the presence of Culicoides imicola through Deep CNNsInternational Conference on Signal-Image Technology and Internet-Based Systems (SITIS), 2019
Stefano Vincenzi
Angelo Porrello
Pietro Buzzega
A. Conte
C. Ippoliti
L. Candeloro
A. D. Lorenzo
A. C. Dondona
Simone Calderara
145
13
0
22 Nov 2019
Computational Ceramicology
Computational Ceramicology
Barak Itkin
Lior Wolf
Nachum Dershowitz
140
9
0
22 Nov 2019
OmniFold: A Method to Simultaneously Unfold All Observables
OmniFold: A Method to Simultaneously Unfold All ObservablesPhysical Review Letters (PRL), 2019
Anders Andreassen
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
Jesse Thaler
267
138
0
20 Nov 2019
Classification with Costly Features in Hierarchical Deep Sets
Classification with Costly Features in Hierarchical Deep SetsMachine-mediated learning (ML), 2019
Jaromír Janisch
Tomávs Pevný
Viliam Lisý
344
2
0
20 Nov 2019
Representation Learning with Multisets
Representation Learning with Multisets
Vasco Portilheiro
SSL
77
0
0
19 Nov 2019
Learning Permutation Invariant Representations using Memory Networks
Learning Permutation Invariant Representations using Memory NetworksEuropean Conference on Computer Vision (ECCV), 2019
Shivam Kalra
Mohammed Adnan
Graham W. Taylor
Hamid Tizhoosh
182
26
0
18 Nov 2019
Satellite Image Time Series Classification with Pixel-Set Encoders and
  Temporal Self-Attention
Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-AttentionComputer Vision and Pattern Recognition (CVPR), 2019
Vivien Sainte Fare Garnot
Loic Landrieu
S. Giordano
N. Chehata
185
178
0
18 Nov 2019
GraphX-Convolution for Point Cloud Deformation in 2D-to-3D Conversion
GraphX-Convolution for Point Cloud Deformation in 2D-to-3D ConversionIEEE International Conference on Computer Vision (ICCV), 2019
Anh-Duc Nguyen
Seonghwan Choi
Woojae Kim
Sanghoon Lee
3DPC
166
37
0
15 Nov 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
195
745
0
07 Nov 2019
An End-to-End Deep RL Framework for Task Arrangement in Crowdsourcing
  Platforms
An End-to-End Deep RL Framework for Task Arrangement in Crowdsourcing PlatformsIEEE International Conference on Data Engineering (ICDE), 2019
Caihua Shan
N. Mamoulis
Reynold Cheng
Guoliang Li
Xiang Li
Yuqiu Qian
OffRL
102
24
0
04 Nov 2019
Review: Ordinary Differential Equations For Deep Learning
Review: Ordinary Differential Equations For Deep Learning
Xinshi Chen
AI4TSAI4CE
160
5
0
01 Nov 2019
Chirality Nets for Human Pose Regression
Chirality Nets for Human Pose RegressionNeural Information Processing Systems (NeurIPS), 2019
Raymond A. Yeh
Yuan-Ting Hu
Alex Schwing
3DH
216
58
0
31 Oct 2019
PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement
  Learning
PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement LearningConference on Robot Learning (CoRL), 2019
Iou-Jen Liu
Raymond A. Yeh
Alex Schwing
245
90
0
31 Oct 2019
End-to-end Microphone Permutation and Number Invariant Multi-channel
  Speech Separation
End-to-end Microphone Permutation and Number Invariant Multi-channel Speech SeparationIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019
Yi Luo
Zhuo Chen
N. Mesgarani
Takuya Yoshioka
279
202
0
30 Oct 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural ProcessesInternational Conference on Learning Representations (ICLR), 2019
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
556
187
0
29 Oct 2019
PRNet: Self-Supervised Learning for Partial-to-Partial Registration
PRNet: Self-Supervised Learning for Partial-to-Partial RegistrationNeural Information Processing Systems (NeurIPS), 2019
Yue Wang
Justin Solomon
SSL3DPC
273
436
0
27 Oct 2019
Exchangeable deep neural networks for set-to-set matching and learning
Exchangeable deep neural networks for set-to-set matching and learning
Yuki Saito
Takuma Nakamura
Hirotaka Hachiya
Kenji Fukumizu
260
2
0
22 Oct 2019
Self-Attentive Document Interaction Networks for Permutation Equivariant
  Ranking
Self-Attentive Document Interaction Networks for Permutation Equivariant Ranking
Rama Kumar Pasumarthi
Xuanhui Wang
Michael Bendersky
Marc Najork
139
17
0
21 Oct 2019
CorrGAN: Sampling Realistic Financial Correlation Matrices Using
  Generative Adversarial Networks
CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial NetworksIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019
Gautier Marti
GAN
220
47
0
21 Oct 2019
Optimization Hierarchy for Fair Statistical Decision Problems
Optimization Hierarchy for Fair Statistical Decision ProblemsAnnals of Statistics (Ann. Stat.), 2019
A. Aswani
Matt Olfat
481
3
0
18 Oct 2019
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-LearningInternational Conference on Learning Representations (ICLR), 2019
L. Zintgraf
K. Shiarlis
Maximilian Igl
Sebastian Schulze
Y. Gal
Katja Hofmann
Shimon Whiteson
OffRL
339
304
0
18 Oct 2019
Graph Embedding VAE: A Permutation Invariant Model of Graph Structure
Graph Embedding VAE: A Permutation Invariant Model of Graph Structure
Tony Duan
Juho Lee
GNNBDLCML
83
2
0
17 Oct 2019
Forecast Evaluation of Quantiles, Prediction Intervals, and other
  Set-Valued Functionals
Forecast Evaluation of Quantiles, Prediction Intervals, and other Set-Valued FunctionalsElectronic Journal of Statistics (EJS), 2019
Tobias Fissler
Rafael Frongillo
Jana Hlavinová
Birgit Rudloff
185
20
0
16 Oct 2019
Improved Generalization Bounds of Group Invariant / Equivariant Deep
  Networks via Quotient Feature Spaces
Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature SpacesConference on Uncertainty in Artificial Intelligence (UAI), 2019
Akiyoshi Sannai
Masaaki Imaizumi
M. Kawano
MLT
204
35
0
15 Oct 2019
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural
  Networks
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
Takanori Maehara
Hoang NT
229
31
0
09 Oct 2019
Irregular Convolutional Auto-Encoder on Point Clouds
Irregular Convolutional Auto-Encoder on Point Clouds
Yuhui Zhang
G. Gutmann
Konagaya Akihiko
3DPC
89
2
0
07 Oct 2019
Deep Hyperedges: a Framework for Transductive and Inductive Learning on
  Hypergraphs
Deep Hyperedges: a Framework for Transductive and Inductive Learning on Hypergraphs
Josh Payne
GNN
193
26
0
07 Oct 2019
On Universal Equivariant Set Networks
On Universal Equivariant Set NetworksInternational Conference on Learning Representations (ICLR), 2019
Nimrod Segol
Y. Lipman
3DPC
289
70
0
06 Oct 2019
Predicting materials properties without crystal structure: Deep
  representation learning from stoichiometry
Predicting materials properties without crystal structure: Deep representation learning from stoichiometryNature Communications (Nat Commun), 2019
Rhys E. A. Goodall
A. Lee
209
300
0
01 Oct 2019
On the Equivalence between Positional Node Embeddings and Structural
  Graph Representations
On the Equivalence between Positional Node Embeddings and Structural Graph RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Ninad Kulkarni
Bruno Ribeiro
244
27
0
01 Oct 2019
Contextual Graph Attention for Answering Logical Queries over Incomplete
  Knowledge Graphs
Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge GraphsInternational Conference on Knowledge Capture (K-CAP), 2019
Gengchen Mai
K. Janowicz
Bo Yan
Rui Zhu
Ling Cai
Ni Lao
171
17
0
30 Sep 2019
IPC-Net: 3D point-cloud segmentation using deep inter-point
  convolutional layers
IPC-Net: 3D point-cloud segmentation using deep inter-point convolutional layersIEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2018
F. Marulanda
Pieter J. K. Libin
T. Verstraeten
A. Nowé
3DPC
83
5
0
30 Sep 2019
Dynamic Interaction-Aware Scene Understanding for Reinforcement Learning
  in Autonomous Driving
Dynamic Interaction-Aware Scene Understanding for Reinforcement Learning in Autonomous DrivingIEEE International Conference on Robotics and Automation (ICRA), 2019
M. Huegle
Gabriel Kalweit
M. Werling
Joschka Boedecker
3DPC
155
38
0
30 Sep 2019
ATOL: Measure Vectorization for Automatic Topologically-Oriented
  Learning
ATOL: Measure Vectorization for Automatic Topologically-Oriented Learning
Martin Royer
Frédéric Chazal
Clément Levrard
Yuhei Umeda
Yuichi Ike
140
2
0
30 Sep 2019
Deep Amortized Clustering
Deep Amortized Clustering
Juho Lee
Yoonho Lee
Yee Whye Teh
FedML
136
23
0
30 Sep 2019
META$^\mathbf{2}$: Memory-efficient taxonomic classification and
  abundance estimation for metagenomics with deep learning
META2^\mathbf{2}2: Memory-efficient taxonomic classification and abundance estimation for metagenomics with deep learning
Andreas Georgiou
Vincent Fortuin
Harun Mustafa
Gunnar Rätsch
93
7
0
28 Sep 2019
Set Functions for Time Series
Set Functions for Time SeriesInternational Conference on Machine Learning (ICML), 2019
Max Horn
Michael Moor
Christian Bock
Bastian Rieck
Karsten Borgwardt
AI4TS
382
180
0
26 Sep 2019
PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation
  Invariant Set Functions
PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set FunctionsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
Shupeng Gui
Xiangliang Zhang
Pan Zhong
Delin Qu
Mingrui Wu
Jieping Ye
Zhengdao Wang
Ji Liu
183
18
0
25 Sep 2019
Graph Neural Reasoning May Fail in Certifying Boolean Unsatisfiability
Graph Neural Reasoning May Fail in Certifying Boolean Unsatisfiability
Ziliang Chen
Zhanfu Yang
NAIAI4CE
174
5
0
25 Sep 2019
Multi-task Batch Reinforcement Learning with Metric Learning
Multi-task Batch Reinforcement Learning with Metric Learning
Jiachen Li
Q. Vuong
Shuang Liu
Minghua Liu
K. Ciosek
George Andriopoulos
Henrik I. Christensen
H. Su
OffRL
304
2
0
25 Sep 2019
Deep Message Passing on Sets
Deep Message Passing on SetsAAAI Conference on Artificial Intelligence (AAAI), 2019
Yifeng Shi
Junier Oliva
Marc Niethammer
PINN
83
9
0
21 Sep 2019
Recognizing Variables from their Data via Deep Embeddings of
  Distributions
Recognizing Variables from their Data via Deep Embeddings of DistributionsIndustrial Conference on Data Mining (IDM), 2019
Jonas W. Mueller
Alex Smola
109
9
0
11 Sep 2019
DensePoint: Learning Densely Contextual Representation for Efficient
  Point Cloud Processing
DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud ProcessingIEEE International Conference on Computer Vision (ICCV), 2019
Yongcheng Liu
Bin Fan
Gaofeng Meng
Jiwen Lu
Shiming Xiang
Chunhong Pan
3DPC
391
292
0
09 Sep 2019
Solving Continual Combinatorial Selection via Deep Reinforcement
  Learning
Solving Continual Combinatorial Selection via Deep Reinforcement LearningInternational Joint Conference on Artificial Intelligence (IJCAI), 2019
Hyungseok Song
Hyeryung Jang
H. Tran
Se-eun Yoon
Kyunghwan Son
Donggyu Yun
Hyoju Chung
Yung Yi
80
11
0
09 Sep 2019
GMLS-Nets: A framework for learning from unstructured data
GMLS-Nets: A framework for learning from unstructured data
Nathaniel Trask
Ravi G. Patel
B. Gross
P. Atzberger
213
41
0
07 Sep 2019
Set Flow: A Permutation Invariant Normalizing Flow
Set Flow: A Permutation Invariant Normalizing Flow
Kashif Rasul
Ingmar Schuster
Roland Vollgraf
Urs M. Bergmann
BDL3DPCDRL
135
6
0
06 Sep 2019
Powerset Convolutional Neural Networks
Powerset Convolutional Neural NetworksNeural Information Processing Systems (NeurIPS), 2019
Chris Wendler
Dan Alistarh
Markus Püschel
GNN
226
19
0
05 Sep 2019
Flexible Conditional Image Generation of Missing Data with Learned
  Mental Maps
Flexible Conditional Image Generation of Missing Data with Learned Mental Maps
Benjamin Hou
Athanasios Vlontzos
A. Alansary
Daniel Rueckert
Bernhard Kainz
MedIm
115
1
0
29 Aug 2019
StarNet: Targeted Computation for Object Detection in Point Clouds
StarNet: Targeted Computation for Object Detection in Point Clouds
Jiquan Ngiam
Benjamin Caine
Wei Han
Brandon Yang
Yuning Chai
...
O. Alsharif
Patrick Nguyen
Zhiwen Chen
Jonathon Shlens
Vijay Vasudevan
3DPC
279
125
0
29 Aug 2019
Previous
123...262728...303132
Next