ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06114
  4. Cited By
Deep Sets

Deep Sets

10 March 2017
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
ArXivPDFHTML

Papers citing "Deep Sets"

50 / 1,439 papers shown
Title
Going Deeper with Lean Point Networks
Going Deeper with Lean Point Networks
Eric-Tuan Lê
Iasonas Kokkinos
Niloy J. Mitra
3DPC
16
6
0
01 Jul 2019
SetGAN: Improving the stability and diversity of generative models
  through a permutation invariant architecture
SetGAN: Improving the stability and diversity of generative models through a permutation invariant architecture
Alessandro Ferrero
Shireen Elhabian
Ross T. Whitaker
GAN
13
0
0
28 Jun 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Zekun Hao
Ming-Yu Liu
Serge J. Belongie
Bharath Hariharan
3DPC
11
654
0
28 Jun 2019
Flexible SVBRDF Capture with a Multi-Image Deep Network
Flexible SVBRDF Capture with a Multi-Image Deep Network
Valentin Deschaintre
M. Aittala
F. Durand
G. Drettakis
Adrien Bousseau
11
114
0
27 Jun 2019
Learning Set-equivariant Functions with SWARM Mappings
Learning Set-equivariant Functions with SWARM Mappings
Roland Vollgraf
8
3
0
22 Jun 2019
Embedding models for recommendation under contextual constraints
Embedding models for recommendation under contextual constraints
Syrine Krichene
Mike Gartrell
Clément Calauzènes
6
2
0
21 Jun 2019
On the Robustness of the Backdoor-based Watermarking in Deep Neural
  Networks
On the Robustness of the Backdoor-based Watermarking in Deep Neural Networks
Masoumeh Shafieinejad
Jiaqi Wang
Nils Lukas
Xinda Li
Florian Kerschbaum
AAML
17
8
0
18 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard E. Turner
16
240
0
18 Jun 2019
Deep Set Prediction Networks
Deep Set Prediction Networks
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
17
107
0
15 Jun 2019
Predicting Choice with Set-Dependent Aggregation
Predicting Choice with Set-Dependent Aggregation
Nir Rosenfeld
Kojin Oshiba
Yaron Singer
12
16
0
14 Jun 2019
Identifying Illicit Accounts in Large Scale E-payment Networks -- A
  Graph Representation Learning Approach
Identifying Illicit Accounts in Large Scale E-payment Networks -- A Graph Representation Learning Approach
D. Tam
Wing Cheong Lau
Bin Hu
Qiufang Ying
D. Chiu
Hong Liu
GNN
14
21
0
13 Jun 2019
Neural Networks on Groups
Neural Networks on Groups
Stella Biderman
22
1
0
13 Jun 2019
Representation Learning for Words and Entities
Representation Learning for Words and Entities
Pushpendre Rastogi
SSL
17
0
0
12 Jun 2019
Position-aware Graph Neural Networks
Position-aware Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
8
489
0
11 Jun 2019
Learning the Graphical Structure of Electronic Health Records with Graph
  Convolutional Transformer
Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
E. Choi
Zhen Xu
Yujia Li
Michael W. Dusenberry
Gerardo Flores
Yuan Xue
Andrew M. Dai
MedIm
14
237
0
11 Jun 2019
Write, Execute, Assess: Program Synthesis with a REPL
Write, Execute, Assess: Program Synthesis with a REPL
Kevin Ellis
Maxwell Nye
Yewen Pu
Felix Sosa
J. Tenenbaum
Armando Solar-Lezama
14
166
0
09 Jun 2019
FSPool: Learning Set Representations with Featurewise Sort Pooling
FSPool: Learning Set Representations with Featurewise Sort Pooling
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
17
75
0
06 Jun 2019
SparseSense: Human Activity Recognition from Highly Sparse Sensor
  Data-streams Using Set-based Neural Networks
SparseSense: Human Activity Recognition from Highly Sparse Sensor Data-streams Using Set-based Neural Networks
Alireza Abedin Varamin
S. Hamid Rezatofighi
Javen Qinfeng Shi
D. Ranasinghe
17
21
0
06 Jun 2019
Noise Contrastive Meta-Learning for Conditional Density Estimation using
  Kernel Mean Embeddings
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings
Jean-François Ton
Lucian Chan
Yee Whye Teh
Dino Sejdinovic
11
12
0
05 Jun 2019
Approximation capability of neural networks on spaces of probability
  measures and tree-structured domains
Approximation capability of neural networks on spaces of probability measures and tree-structured domains
Tomás Pevný
Vojtěch Kovařík
11
14
0
03 Jun 2019
Topological Autoencoders
Topological Autoencoders
Michael Moor
Max Horn
Bastian Alexander Rieck
Karsten M. Borgwardt
19
145
0
03 Jun 2019
Discriminative structural graph classification
Discriminative structural graph classification
Younjoo Seo
Andreas Loukas
Nathanael Perraudin
22
19
0
31 May 2019
What Can Neural Networks Reason About?
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
14
239
0
30 May 2019
One-element Batch Training by Moving Window
One-element Batch Training by Moving Window
P. Spurek
Szymon Knop
Jacek Tabor
Igor T. Podolak
B. Wójcik
VLM
14
0
0
30 May 2019
Learning to Balance: Bayesian Meta-Learning for Imbalanced and
  Out-of-distribution Tasks
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks
Haebeom Lee
Hayeon Lee
Donghyun Na
Saehoon Kim
Minseop Park
Eunho Yang
S. Hwang
BDL
OODD
12
106
0
30 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
19
29
0
28 May 2019
OrderNet: Ordering by Example
OrderNet: Ordering by Example
R. Porter
OffRL
6
0
0
27 May 2019
Representation Learning for Dynamic Graphs: A Survey
Representation Learning for Dynamic Graphs: A Survey
Seyed Mehran Kazemi
Rishab Goel
Kshitij Jain
I. Kobyzev
Akshay Sethi
Peter Forsyth
Pascal Poupart
AI4TS
AI4CE
GNN
18
445
0
27 May 2019
Incidence Networks for Geometric Deep Learning
Incidence Networks for Geometric Deep Learning
Marjan Albooyeh
Daniele Bertolini
Siamak Ravanbakhsh
GNN
13
26
0
27 May 2019
Learning by stochastic serializations
Learning by stochastic serializations
Pablo Strasser
S. Armand
Stéphane Marchand-Maillet
Alexandros Kalousis
14
0
0
27 May 2019
Provably Powerful Graph Networks
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
17
562
0
27 May 2019
Dataset2Vec: Learning Dataset Meta-Features
Dataset2Vec: Learning Dataset Meta-Features
H. Jomaa
Lars Schmidt-Thieme
Josif Grabocka
SSL
9
61
0
27 May 2019
Graph Filtration Learning
Graph Filtration Learning
Christoph Hofer
Florian Graf
Bastian Alexander Rieck
Marc Niethammer
Roland Kwitt
14
96
0
27 May 2019
Differentiable Representations For Multihop Inference Rules
Differentiable Representations For Multihop Inference Rules
William W. Cohen
Haitian Sun
R. A. Hofer
M. Siegler
9
2
0
24 May 2019
Learning Surrogate Losses
Learning Surrogate Losses
Josif Grabocka
Randolf Scholz
Lars Schmidt-Thieme
20
41
0
24 May 2019
Bayesian Optimization with Approximate Set Kernels
Bayesian Optimization with Approximate Set Kernels
Jungtaek Kim
M. McCourt
Tackgeun You
Saehoon Kim
Seungjin Choi
11
8
0
23 May 2019
Learning Video Representations from Correspondence Proposals
Learning Video Representations from Correspondence Proposals
Xingyu Liu
Joon-Young Lee
Hailin Jin
24
63
0
20 May 2019
SAWNet: A Spatially Aware Deep Neural Network for 3D Point Cloud
  Processing
SAWNet: A Spatially Aware Deep Neural Network for 3D Point Cloud Processing
Chaitanya Kaul
Nick E. Pears
S. Manandhar
3DPC
19
14
0
18 May 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
6
316
0
17 May 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GAN
BDL
19
9
0
14 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
13
284
0
13 May 2019
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph
  Classification
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
Ting-Li Chen
Song Bian
Yizhou Sun
11
88
0
11 May 2019
Deep Closest Point: Learning Representations for Point Cloud
  Registration
Deep Closest Point: Learning Representations for Point Cloud Registration
Yue Wang
Justin Solomon
3DPC
20
837
0
08 May 2019
Object Exchangeability in Reinforcement Learning: Extended Abstract
Object Exchangeability in Reinforcement Learning: Extended Abstract
John Mern
Dorsa Sadigh
Mykel Kochenderfer
OCL
14
1
0
07 May 2019
Graph Matching Networks for Learning the Similarity of Graph Structured
  Objects
Graph Matching Networks for Learning the Similarity of Graph Structured Objects
Yujia Li
Chenjie Gu
T. Dullien
Oriol Vinyals
Pushmeet Kohli
63
509
0
29 Apr 2019
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Jakub M. Tomczak
Romain Lepert
Auke Wiggers
GNN
11
5
0
26 Apr 2019
Weakly Supervised Instance Learning for Thyroid Malignancy Prediction
  from Whole Slide Cytopathology Images
Weakly Supervised Instance Learning for Thyroid Malignancy Prediction from Whole Slide Cytopathology Images
D. Dov
S. Kovalsky
Serge Assaad
Jonathan Cohen
D. Range
Ricardo Henao
Lawrence Carin
24
10
0
26 Apr 2019
Deep Q-Learning for Nash Equilibria: Nash-DQN
Deep Q-Learning for Nash Equilibria: Nash-DQN
P. Casgrain
Brian Ning
S. Jaimungal
11
32
0
23 Apr 2019
LBS Autoencoder: Self-supervised Fitting of Articulated Meshes to Point
  Clouds
LBS Autoencoder: Self-supervised Fitting of Articulated Meshes to Point Clouds
Chun-Liang Li
Tomas Simon
Jason M. Saragih
Barnabás Póczós
Yaser Sheikh
3DPC
14
40
0
22 Apr 2019
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph
  Topological Signatures
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures
Mathieu Carrière
Frédéric Chazal
Yuichi Ike
Théo Lacombe
Martin Royer
Yuhei Umeda
12
175
0
20 Apr 2019
Previous
123...2526272829
Next