Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.06279
Cited By
Mutual Information, Neural Networks and the Renormalization Group
20 April 2017
M. Koch-Janusz
Zohar Ringel
DRL
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mutual Information, Neural Networks and the Renormalization Group"
50 / 52 papers shown
Title
A Two-Phase Perspective on Deep Learning Dynamics
Robert de Mello Koch
Animik Ghosh
41
0
0
17 Apr 2025
Data augmentation using diffusion models to enhance inverse Ising inference
Yechan Lim
Sangwon Lee
Junghyo Jo
DiffM
53
0
0
13 Mar 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
Surveying the space of descriptions of a composite system with machine learning
Kieran A. Murphy
Yujing Zhang
D. Bassett
84
0
0
27 Nov 2024
GUD: Generation with Unified Diffusion
Mathis Gerdes
Max Welling
Miranda C. N. Cheng
DiffM
37
1
0
03 Oct 2024
MS
3
^3
3
D: A RG Flow-Based Regularization for GAN Training with Limited Data
Jian Wang
Xin Lan
Yuxin Tian
Jiancheng Lv
AI4CE
38
1
0
20 Aug 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Wilsonian Renormalization of Neural Network Gaussian Processes
Jessica N. Howard
Ro Jefferson
Anindita Maiti
Zohar Ringel
BDL
80
3
0
09 May 2024
Tensor networks for interpretable and efficient quantum-inspired machine learning
Shirli Ran
Gang Su
45
7
0
19 Nov 2023
Renormalizing Diffusion Models
Jordan S. Cotler
Semon Rezchikov
DiffM
AI4CE
37
11
0
23 Aug 2023
Information decomposition in complex systems via machine learning
Kieran A. Murphy
Danielle Bassett
36
9
0
10 Jul 2023
Three Learning Stages and Accuracy-Efficiency Tradeoff of Restricted Boltzmann Machines
Lennart Dabelow
Masahito Ueda
38
11
0
02 Sep 2022
NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS Attack Detection in IoT Domains
Kumar Saurabh
T. kumar
Uphar Singh
O. P. Vyas
R. Khondoker
17
11
0
15 Jul 2022
Boundary between noise and information applied to filtering neural network weight matrices
Max Staats
M. Thamm
B. Rosenow
23
3
0
08 Jun 2022
Categorical Representation Learning and RG flow operators for algorithmic classifiers
A. Sheshmani
Yi-Zhuang You
Wenbo Fu
A. Azizi
AI4CE
14
1
0
15 Mar 2022
Learning entanglement breakdown as a phase transition by confusion
M. A. Gavreev
A. S. Mastiukova
E. Kiktenko
A. Fedorov
24
9
0
01 Feb 2022
Neural Information Squeezer for Causal Emergence
Jiang Zhang
Kaiwei Liu
CML
30
14
0
25 Jan 2022
Differentiable Programming of Isometric Tensor Networks
Chenhua Geng
Hong-Ye Hu
Yijian Zou
31
10
0
08 Oct 2021
Universality of Winning Tickets: A Renormalization Group Perspective
William T. Redman
Tianlong Chen
Zhangyang Wang
Akshunna S. Dogra
UQCV
62
7
0
07 Oct 2021
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
41
30
0
03 Aug 2021
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
54
17
0
14 Jul 2021
The Autodidactic Universe
S. Alexander
W. Cunningham
J. Lanier
L. Smolin
S. Stanojevic
M. Toomey
D. Wecker
AI4CE
10
20
0
29 Mar 2021
Tensor networks and efficient descriptions of classical data
Sirui Lu
Márton Kanász-Nagy
I. Kukuljan
J. I. Cirac
24
24
0
11 Mar 2021
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
23
19
0
30 Sep 2020
RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior
Hong-Ye Hu
Dian Wu
Yi-Zhuang You
Bruno A. Olshausen
Yubei Chen
BDL
DRL
17
15
0
30 Sep 2020
Maximum Multiscale Entropy and Neural Network Regularization
Amir-Reza Asadi
Emmanuel Abbe
23
1
0
25 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
8
183
0
18 Jun 2020
Restricted Boltzmann Machine Flows and The Critical Temperature of Ising models
R. Veiga
R. Vicente
AI4CE
8
5
0
17 Jun 2020
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
20
66
0
28 May 2020
Symbolic Pregression: Discovering Physical Laws from Distorted Video
S. Udrescu
Max Tegmark
21
40
0
19 May 2020
Boosting on the shoulders of giants in quantum device calibration
A. Wozniakowski
Jayne Thompson
M. Gu
F. Binder
16
3
0
13 May 2020
Probing Criticality in Quantum Spin Chains with Neural Networks
A. Berezutskii
M. Beketov
D. Yudin
Z. Zimborás
J Biamonte
AI4CE
11
9
0
05 May 2020
Renormalized Mutual Information for Artificial Scientific Discovery
Leopoldo Sarra
A. Aiello
F. Marquardt
11
4
0
04 May 2020
Learning entropy production via neural networks
Dong-Kyum Kim
Youngkyoung Bae
Sangyun Lee
Hawoong Jeong
11
38
0
09 Mar 2020
Short sighted deep learning
R. Koch
Anita de Mello Koch
Nicholas Kastanos
Ling Cheng
22
8
0
07 Feb 2020
Learning the Ising Model with Generative Neural Networks
Francesco DÁngelo
Lucas Böttcher
AI4CE
16
28
0
15 Jan 2020
'Place-cell' emergence and learning of invariant data with restricted Boltzmann machines: breaking and dynamical restoration of continuous symmetries in the weight space
Moshir Harsh
J. Tubiana
Simona Cocco
R. Monasson
11
14
0
30 Dec 2019
Self-regularizing restricted Boltzmann machines
Orestis Loukas
11
2
0
09 Dec 2019
The Expressivity and Training of Deep Neural Networks: toward the Edge of Chaos?
Gege Zhang
Gang-cheng Li
Ningwei Shen
Weidong Zhang
22
6
0
11 Oct 2019
The many faces of deep learning
Raul Vicente
FedML
AI4CE
19
0
0
25 Aug 2019
Learning a Local Symmetry with Neural-Networks
A. Decelle
V. Martín-Mayor
Beatriz Seoane
11
12
0
16 Apr 2019
Revealing quantum chaos with machine learning
Y. Kharkov
V. E. Sotskov
A. A. Karazeev
E. Kiktenko
A. Fedorov
AI4CE
27
27
0
25 Feb 2019
Thermodynamics and Feature Extraction by Machine Learning
S. Funai
D. Giataganas
DRL
AI4CE
16
34
0
18 Oct 2018
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
19
385
0
26 Jul 2018
Mean Field Theory of Activation Functions in Deep Neural Networks
M. Milletarí
Thiparat Chotibut
P. E. Trevisanutto
12
4
0
22 May 2018
Opening the black box of deep learning
Dian Lei
Xiaoxiao Chen
Jianfei Zhao
AI4CE
PINN
13
26
0
22 May 2018
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
26
867
0
23 Mar 2018
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
31
126
0
08 Feb 2018
Scale-invariant Feature Extraction of Neural Network and Renormalization Group Flow
S. Iso
Shotaro Shiba
Sumito Yokoo
OOD
AI4CE
35
70
0
22 Jan 2018
Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines
Song Cheng
J. Chen
Lei Wang
24
101
0
12 Dec 2017
1
2
Next