ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.07555
  4. Cited By
Molecular De Novo Design through Deep Reinforcement Learning

Molecular De Novo Design through Deep Reinforcement Learning

25 April 2017
Marcus Olivecrona
T. Blaschke
O. Engkvist
Hongming Chen
    BDL
ArXivPDFHTML

Papers citing "Molecular De Novo Design through Deep Reinforcement Learning"

50 / 253 papers shown
Title
MLT-LE: predicting drug-target binding affinity with multi-task residual
  neural networks
MLT-LE: predicting drug-target binding affinity with multi-task residual neural networks
E. Vinogradova
K. Pats
Ferdinand Molnár
S. Fazli
21
0
0
13 Sep 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
45
20
0
12 Sep 2022
Retrieval-based Controllable Molecule Generation
Retrieval-based Controllable Molecule Generation
Zichao Wang
Weili Nie
Zhuoran Qiao
Chaowei Xiao
Richard Baraniuk
Anima Anandkumar
24
36
0
23 Aug 2022
A biologically-inspired multi-modal evaluation of molecular generative
  machine learning
A biologically-inspired multi-modal evaluation of molecular generative machine learning
E. Vinogradova
Abay Artykbayev
Alisher Amanatay
Mukhamejan Karatayev
Maxim Mametkulov
...
K. Pats
Rustam Zhumagambetov
Ferdinand Molnár
Vsevolod A. Peshkov
S. Fazli
ELM
20
0
0
20 Aug 2022
Improving Small Molecule Generation using Mutual Information Machine
Improving Small Molecule Generation using Mutual Information Machine
Daniel A. Reidenbach
M. Livne
Rajesh Ilango
M. Gill
Johnny Israeli
28
14
0
18 Aug 2022
Semi-Supervised Junction Tree Variational Autoencoder for Molecular
  Property Prediction
Semi-Supervised Junction Tree Variational Autoencoder for Molecular Property Prediction
Atia Hamidizadeh
Tony Shen
Martin Ester
DRL
28
0
0
10 Aug 2022
Topology-Driven Generative Completion of Lacunae in Molecular Data
Topology-Driven Generative Completion of Lacunae in Molecular Data
Dmitry Zubarev
Petar Ristoski
23
0
0
29 Jul 2022
Flowsheet synthesis through hierarchical reinforcement learning and
  graph neural networks
Flowsheet synthesis through hierarchical reinforcement learning and graph neural networks
Laura Stops
Roel Leenhouts
Qitong Gao
Artur M. Schweidtmann
AI4CE
19
23
0
25 Jul 2022
Towards Global Optimality in Cooperative MARL with the Transformation
  And Distillation Framework
Towards Global Optimality in Cooperative MARL with the Transformation And Distillation Framework
Jianing Ye
Chenghao Li
Jianhao Wang
Chongjie Zhang
39
2
0
12 Jul 2022
Multisymplectic Formulation of Deep Learning Using Mean--Field Type
  Control and Nonlinear Stability of Training Algorithm
Multisymplectic Formulation of Deep Learning Using Mean--Field Type Control and Nonlinear Stability of Training Algorithm
Nader Ganaba
11
0
0
07 Jul 2022
LIMO: Latent Inceptionism for Targeted Molecule Generation
LIMO: Latent Inceptionism for Targeted Molecule Generation
Peter Eckmann
Kunyang Sun
Bo-Lu Zhao
Mudong Feng
Michael K. Gilson
Rose Yu
BDL
43
44
0
17 Jun 2022
Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
  Reward
Provably Efficient Offline Reinforcement Learning with Trajectory-Wise Reward
Tengyu Xu
Yue Wang
Shaofeng Zou
Yingbin Liang
OffRL
28
13
0
13 Jun 2022
Exploring Chemical Space with Score-based Out-of-distribution Generation
Exploring Chemical Space with Score-based Out-of-distribution Generation
Seul Lee
Jaehyeong Jo
Sung Ju Hwang
OODD
30
75
0
06 Jun 2022
Probabilistic Transformer: Modelling Ambiguities and Distributions for
  RNA Folding and Molecule Design
Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design
Jörg Franke
Frederic Runge
Frank Hutter
17
14
0
27 May 2022
Translation between Molecules and Natural Language
Translation between Molecules and Natural Language
Carl N. Edwards
T. Lai
Kevin Ros
Garrett Honke
Kyunghyun Cho
Heng Ji
30
157
0
25 Apr 2022
3D pride without 2D prejudice: Bias-controlled multi-level generative
  models for structure-based ligand design
3D pride without 2D prejudice: Bias-controlled multi-level generative models for structure-based ligand design
Lucian Chan
Rajendra Kumar
M. Verdonk
C. Poelking
DiffM
AI4CE
19
2
0
22 Apr 2022
Generative Enriched Sequential Learning (ESL) Approach for Molecular
  Design via Augmented Domain Knowledge
Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge
M. S. Ghaemi
Karl Grantham
Isaac Tamblyn
Yifeng Li
H. K. Ooi
25
3
0
05 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
Data-Efficient Graph Grammar Learning for Molecular Generation
Data-Efficient Graph Grammar Learning for Molecular Generation
Minghao Guo
Veronika Thost
Beichen Li
Payel Das
Jie Chen
Wojciech Matusik
38
36
0
15 Mar 2022
Multi-Objective Latent Space Optimization of Generative Molecular Design
  Models
Multi-Objective Latent Space Optimization of Generative Molecular Design Models
Nafiz Abeer
Nathan M. Urban
Ryan Weil
Francis J. Alexander
Byung-Jun Yoon
23
15
0
01 Mar 2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
27
19
0
08 Feb 2022
Biases in In Silico Evaluation of Molecular Optimization Methods and
  Bias-Reduced Evaluation Methodology
Biases in In Silico Evaluation of Molecular Optimization Methods and Bias-Reduced Evaluation Methodology
Hiroshi Kajino
Kohei Miyaguchi
Takayuki Osogami
59
1
0
28 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
51
69
0
28 Jan 2022
Reinforcement Learning for Personalized Drug Discovery and Design for
  Complex Diseases: A Systems Pharmacology Perspective
Reinforcement Learning for Personalized Drug Discovery and Design for Complex Diseases: A Systems Pharmacology Perspective
Ryan K. Tan
Yang Liu
Lei Xie
37
2
0
21 Jan 2022
Agent-Temporal Attention for Reward Redistribution in Episodic
  Multi-Agent Reinforcement Learning
Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement Learning
Baicen Xiao
Bhaskar Ramasubramanian
Radha Poovendran
14
4
0
12 Jan 2022
Reversible Upper Confidence Bound Algorithm to Generate Diverse
  Optimized Candidates
Reversible Upper Confidence Bound Algorithm to Generate Diverse Optimized Candidates
Bin Chong
Yingguang Yang
Zi-Le Wang
Hang Xing
Zhirong Liu
6
4
0
30 Dec 2021
A molecular generative model with genetic algorithm and tree search for
  cancer samples
A molecular generative model with genetic algorithm and tree search for cancer samples
Sejin Park
Hyunju Lee
21
1
0
16 Dec 2021
Permutation Equivariant Generative Adversarial Networks for Graphs
Permutation Equivariant Generative Adversarial Networks for Graphs
Yoann Boget
Magda Gregorova
Alexandros Kalousis
GAN
11
0
0
07 Dec 2021
Sample-Efficient Generation of Novel Photo-acid Generator Molecules
  using a Deep Generative Model
Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model
Samuel C. Hoffman
Vijil Chenthamarakshan
Dmitry Zubarev
Daniel P. Sanders
Payel Das
38
5
0
02 Dec 2021
Molecular Attributes Transfer from Non-Parallel Data
Molecular Attributes Transfer from Non-Parallel Data
Shuangjia Zheng
Ying Song
Zhang Pan
Chengtao Li
Le Song
Yuedong Yang
11
0
0
30 Nov 2021
Structure-aware generation of drug-like molecules
Structure-aware generation of drug-like molecules
Pavol Drotár
Arian R. Jamasb
Ben Day
Cătălina Cangea
Pietro Lió
26
17
0
07 Nov 2021
Combining Latent Space and Structured Kernels for Bayesian Optimization
  over Combinatorial Spaces
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal
J. Doppa
BDL
32
42
0
01 Nov 2021
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
37
75
0
29 Oct 2021
Fragment-based Sequential Translation for Molecular Optimization
Fragment-based Sequential Translation for Molecular Optimization
Benson Chen
Xiang Fu
Regina Barzilay
Tommi Jaakkola
32
7
0
26 Oct 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
29
19
0
22 Oct 2021
An In-depth Summary of Recent Artificial Intelligence Applications in
  Drug Design
An In-depth Summary of Recent Artificial Intelligence Applications in Drug Design
Yi Zhang
AI4CE
35
4
0
10 Oct 2021
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule
  Generation
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Generation
Soojung Yang
Doyeong Hwang
Seul Lee
Seongok Ryu
Sung Ju Hwang
34
67
0
04 Oct 2021
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
Maciej Wołczyk
Magdalena Proszewska
Lukasz Maziarka
Maciej Ziȩba
Patryk Wielopolski
Rafał Kurczab
Marek Śmieja
DRL
27
5
0
18 Sep 2021
C5T5: Controllable Generation of Organic Molecules with Transformers
C5T5: Controllable Generation of Organic Molecules with Transformers
D. Rothchild
Alex Tamkin
Julie H. Yu
Ujval Misra
Joseph E. Gonzalez
46
29
0
23 Aug 2021
Functional Nanomaterials Design in the Workflow of Building
  Machine-Learning Models
Functional Nanomaterials Design in the Workflow of Building Machine-Learning Models
Zhexu Xi
AI4CE
14
0
0
16 Aug 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Evaluating the progress of Deep Reinforcement Learning in the real
  world: aligning domain-agnostic and domain-specific research
Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research
J. Luis
E. Crawley
B. Cameron
OffRL
25
6
0
07 Jul 2021
Off-Policy Reinforcement Learning with Delayed Rewards
Off-Policy Reinforcement Learning with Delayed Rewards
Beining Han
Zhizhou Ren
Zuofan Wu
Yuanshuo Zhou
Jian-wei Peng
OffRL
15
29
0
22 Jun 2021
Learning Space Partitions for Path Planning
Learning Space Partitions for Path Planning
Kevin Kaichuang Yang
Tianjun Zhang
Chris Cummins
Brandon Cui
Benoit Steiner
Linnan Wang
Joseph E. Gonzalez
Dan Klein
Yuandong Tian
21
10
0
19 Jun 2021
Artificial Intelligence in Drug Discovery: Applications and Techniques
Artificial Intelligence in Drug Discovery: Applications and Techniques
Jianyuan Deng
Zhibo Yang
Iwao Ojima
Dimitris Samaras
Fusheng Wang
AI4TS
23
100
0
09 Jun 2021
JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural
  Networks for Inverse Molecular Design
JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design
AkshatKumar Nigam
R. Pollice
Alán Aspuru-Guzik
29
51
0
07 Jun 2021
Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug
  Discovery
Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery
Yulun Wu
Mikaela Cashman
Nicholas Choma
E. Prates
V. G. M. Vergara
...
M. Head
Rick L. Stevens
Peter Nugent
Daniel A. Jacobson
James B. Brown
GNN
41
10
0
04 Jun 2021
Realistic molecule optimization on a learned graph manifold
Realistic molecule optimization on a learned graph manifold
Rémy Brossard
Oriel Frigo
David Dehaene
16
0
0
03 Jun 2021
Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
  Models with Varied Molecular Representations
Predicting Aqueous Solubility of Organic Molecules Using Deep Learning Models with Varied Molecular Representations
G. Panapitiya
Michael Girard
Aaron Hollas
V. Murugesan
Wei Wang
Emily Saldanha
17
46
0
26 May 2021
Polygrammar: Grammar for Digital Polymer Representation and Generation
Polygrammar: Grammar for Digital Polymer Representation and Generation
Minghao Guo
Wan Shou
L. Makatura
Timothy Erps
Michael Foshey
Wojciech Matusik
32
24
0
05 May 2021
Previous
123456
Next