Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.07555
Cited By
Molecular De Novo Design through Deep Reinforcement Learning
25 April 2017
Marcus Olivecrona
T. Blaschke
O. Engkvist
Hongming Chen
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Molecular De Novo Design through Deep Reinforcement Learning"
50 / 253 papers shown
Title
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Deep Generative Model for Sparse Graphs using Text-Based Learning with Augmentation in Generative Examination Networks
R. V. Deursen
Guillaume Godin
17
1
0
24 Sep 2019
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative Examination Networks
R. V. Deursen
P. Ertl
Igor V. Tetko
Guillaume Godin
6
32
0
10 Sep 2019
Reinforcement Learning in Healthcare: A Survey
Chao Yu
Jiming Liu
S. Nemati
LM&MA
OffRL
17
547
0
22 Aug 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
30
92
0
20 Aug 2019
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedIm
AI4CE
32
81
0
02 Jul 2019
Hierarchical Graph-to-Graph Translation for Molecules
Wengong Jin
Regina Barzilay
Tommi Jaakkola
26
16
0
11 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
18
716
0
07 Jun 2019
Probabilistic hypergraph grammars for efficient molecular optimization
E. Kraev
Mark Harley
11
1
0
05 Jun 2019
Scaffold-based molecular design using graph generative model
Jaechang Lim
Sang-Yeon Hwang
Seungsu Kim
Seokhyun Moon
Woo Youn Kim
25
17
0
31 May 2019
Sequence Modeling of Temporal Credit Assignment for Episodic Reinforcement Learning
Yang Liu
Yunan Luo
Yuanyi Zhong
Xi Chen
Qiang Liu
Jian-wei Peng
9
35
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
All SMILES Variational Autoencoder
Zaccary Alperstein
Artem Cherkasov
J. Rolfe
DRL
14
38
0
30 May 2019
Leveraging binding-site structure for drug discovery with point-cloud methods
Vincent Mallet
Carlos G. Oliver
N. Moitessier
J. Waldispühl
16
7
0
28 May 2019
Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling
Emmanuel Noutahi
Dominique Beaini
Julien Horwood
Sébastien Giguère
Prudencio Tossou
AI4CE
22
34
0
28 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
20
7
0
24 May 2019
Generating protein sequences from antibiotic resistance genes data using Generative Adversarial Networks
Prabal Chhibbar
Arpita Joshi
GAN
8
12
0
28 Apr 2019
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
21
326
0
11 Mar 2019
Interpretable Deep Learning in Drug Discovery
Kristina Preuer
G. Klambauer
F. Rippmann
Sepp Hochreiter
Thomas Unterthiner
11
88
0
07 Mar 2019
Atomistic structure learning
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
AI4CE
8
36
0
27 Feb 2019
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
15
241
0
06 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
23
1
0
24 Jan 2019
Learning to Design RNA
Frederic Runge
Daniel Stoll
Stefan Falkner
Frank Hutter
14
66
0
31 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
194
633
0
29 Nov 2018
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation
Rim Assouel
Mohamed Ahmed
Marwin H. S. Segler
Amir Saffari
Yoshua Bengio
19
54
0
24 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
I. Cortés-Ciriano
A. Bender
MedIm
27
51
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
Encoding Robust Representation for Graph Generation
Dongmian Zou
Gilad Lerman
GNN
22
0
0
28 Sep 2018
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks
I. Cortés-Ciriano
A. Bender
OOD
UQCV
25
60
0
24 Sep 2018
Latent Molecular Optimization for Targeted Therapeutic Design
Tristan Aumentado-Armstrong
15
41
0
05 Sep 2018
Molecular generative model based on conditional variational autoencoder for de novo molecular design
Jaechang Lim
Seongok Ryu
Jin Woo Kim
W. Kim
BDL
DRL
25
325
0
15 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
203
885
0
07 Jun 2018
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
6
449
0
23 May 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
159
183
0
30 Apr 2018
Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks
Shahar Harel
Kira Radinsky
9
21
0
08 Apr 2018
Feedback GAN (FBGAN) for DNA: a Novel Feedback-Loop Architecture for Optimizing Protein Functions
Anvita Gupta
James Zou
AI4CE
8
55
0
05 Apr 2018
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
16
296
0
28 Mar 2018
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
G. Klambauer
MedIm
18
324
0
26 Mar 2018
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
29
654
0
08 Mar 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
41
831
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
22
211
0
14 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
24
833
0
09 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
35
335
0
18 Jan 2018
In silico generation of novel, drug-like chemical matter using the LSTM neural network
P. Ertl
Richard A. Lewis
E. Martin
V. Polyakov
17
59
0
20 Dec 2017
Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
Marta M. Stepniewska-Dziubinska
P. Zielenkiewicz
P. Siedlecki
21
437
0
19 Dec 2017
Generating and designing DNA with deep generative models
N. Killoran
Leo J. Lee
Andrew Delong
David Duvenaud
B. Frey
AI4CE
24
145
0
17 Dec 2017
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
16
1,002
0
29 Nov 2017
Application of generative autoencoder in de novo molecular design
T. Blaschke
Marcus Olivecrona
O. Engkvist
J. Bajorath
Hongming Chen
AI4CE
36
343
0
21 Nov 2017
Previous
1
2
3
4
5
6
Next