Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.07555
Cited By
Molecular De Novo Design through Deep Reinforcement Learning
25 April 2017
Marcus Olivecrona
T. Blaschke
O. Engkvist
Hongming Chen
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Molecular De Novo Design through Deep Reinforcement Learning"
50 / 253 papers shown
Title
Learning to design drug-like molecules in three-dimensional space using deep generative models
Yibo Li
Jianfeng Pei
L. Lai
DiffM
35
111
0
17 Apr 2021
Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity
Mohammadamin Tavakoli
Aaron Mood
David Van Vranken
Pierre Baldi
GNN
AI4CE
18
28
0
24 Mar 2021
MARS: Markov Molecular Sampling for Multi-objective Drug Discovery
Yutong Xie
Chence Shi
Hao Zhou
Yuwei Yang
Weinan Zhang
Yong Yu
Lei Li
30
138
0
18 Mar 2021
Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds
Austin R. Clyde
A. Ramanathan
Rick L. Stevens
20
4
0
11 Mar 2021
Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention
Hyunseung Kim
Jonggeol Na
Won Bo Lee
14
46
0
27 Feb 2021
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development
Kexin Huang
Tianfan Fu
Wenhao Gao
Yue Zhao
Yusuf Roohani
J. Leskovec
Connor W. Coley
Cao Xiao
Jimeng Sun
Marinka Zitnik
OOD
LM&MA
33
261
0
18 Feb 2021
Artificial Intelligence based Autonomous Molecular Design for Medical Therapeutic: A Perspective
R. P. Joshi
Neeraj Kumar
16
2
0
10 Feb 2021
Deep Graph Generators: A Survey
Faezeh Faez
Yassaman Ommi
M. Baghshah
Hamid R. Rabiee
GNN
AI4CE
48
57
0
31 Dec 2020
Reinforcement Learning for Control of Valves
Rajesh Siraskar
AI4CE
19
28
0
29 Dec 2020
Barking up the right tree: an approach to search over molecule synthesis DAGs
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
51
56
0
21 Dec 2020
Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning
Luca Thiede
Mario Krenn
AkshatKumar Nigam
Alán Aspuru-Guzik
19
30
0
17 Dec 2020
A Deep Generative Model for Molecule Optimization via One Fragment Modification
Ziqi Chen
Martin Renqiang Min
S. Parthasarathy
Xia Ning
21
61
0
08 Dec 2020
Creativity of Deep Learning: Conceptualization and Assessment
Marcus Basalla
Johannes Schneider
Jan vom Brocke
31
14
0
03 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Comparison of Atom Representations in Graph Neural Networks for Molecular Property Prediction
Agnieszka Pocha
Tomasz Danel
Lukasz Maziarka
GNN
32
7
0
23 Nov 2020
Optimizing Molecules using Efficient Queries from Property Evaluations
Samuel C. Hoffman
Vijil Chenthamarakshan
Kahini Wadhawan
Pin-Yu Chen
Payel Das
37
68
0
03 Nov 2020
Goal directed molecule generation using Monte Carlo Tree Search
Anand A. Rajasekar
Karthik Raman
Balaraman Ravindran
6
6
0
30 Oct 2020
Controlled Molecule Generator for Optimizing Multiple Chemical Properties
Bonggun Shin
Sungsoo Park
Jinyeong Bak
Joyce C. Ho
12
14
0
26 Oct 2020
Learning Guidance Rewards with Trajectory-space Smoothing
Tanmay Gangwani
Yuanshuo Zhou
Jian Peng
26
33
0
23 Oct 2020
Maximum Reward Formulation In Reinforcement Learning
S. Gottipati
Yashaswi Pathak
Rohan Nuttall
Sahir
Raviteja Chunduru
Ahmed Touati
Sriram Ganapathi Subramanian
Matthew E. Taylor
Sarath Chandar
26
13
0
08 Oct 2020
MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization
Tianfan Fu
Cao Xiao
Xinhao Li
Lucas Glass
Jimeng Sun
22
75
0
05 Oct 2020
Scaffold-constrained molecular generation
Maxime Langevin
H. Minoux
M. Levesque
M. Bianciotto
26
45
0
15 Sep 2020
Graph Polish: A Novel Graph Generation Paradigm for Molecular Optimization
Chaojie Ji
Yijia Zheng
Ruxin Wang
Yunpeng Cai
Hongyan Wu
23
17
0
14 Aug 2020
Augmenting Molecular Images with Vector Representations as a Featurization Technique for Drug Classification
Daniel de Marchi
A. Budhiraja
16
2
0
09 Aug 2020
Deep Inverse Reinforcement Learning for Structural Evolution of Small Molecules
Brighter Agyemang
Wei-Ping Wu
Daniel Addo
Michael Y. Kpiebaareh
Ebenezer Nanor
C. R. Haruna
18
7
0
24 Jul 2020
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits
Mikolaj Sacha
Mikolaj Blaz
Piotr Byrski
Paweł Dąbrowski-Tumański
Mikołaj Chromiński
Rafał Loska
Pawel Wlodarczyk-Pruszynski
Stanislaw Jastrzebski
GNN
25
142
0
27 Jun 2020
We Should at Least Be Able to Design Molecules That Dock Well
Tobiasz Ciepliński
Tomasz Danel
Sabina Podlewska
Stanislaw Jastrzebski
19
29
0
20 Jun 2020
Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design
Xiufeng Yang
T. Aasawat
Kazuki Yoshizoe
25
0
0
18 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
24
135
0
16 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
28
206
0
09 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties
Zekun Ren
S. Tian
Juhwan Noh
Felipe Oviedo
G. Xing
...
Qianxiao Li
Senthilnath Jayavelu
K. Hippalgaonkar
Yousung Jung
Tonio Buonassisi
AI4CE
38
130
0
15 May 2020
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning
S. Gottipati
B. Sattarov
Sufeng Niu
Yashaswi Pathak
Haoran Wei
...
Simon R. Blackburn
Connor W. Coley
Jian Tang
Sarath Chandar
Yoshua Bengio
6
108
0
26 Apr 2020
CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models
Vijil Chenthamarakshan
Payel Das
Samuel C. Hoffman
Hendrik Strobelt
Inkit Padhi
...
Benjamin Hoover
Matteo Manica
Jannis Born
Teodoro Laino
Aleksandra Mojsilović
37
41
0
02 Apr 2020
Autonomous discovery in the chemical sciences part I: Progress
Connor W. Coley
Natalie S. Eyke
K. Jensen
13
213
0
30 Mar 2020
When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey
Chongzhen Zhang
Jianrui Wang
Gary G. Yen
Chaoqiang Zhao
Qiyu Sun
Yang Tang
Feng Qian
Jürgen Kurths
AAML
31
20
0
29 Mar 2020
A Graph to Graphs Framework for Retrosynthesis Prediction
Chence Shi
Minkai Xu
Hongyu Guo
Ming Zhang
Jian Tang
19
151
0
28 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
18
82
0
18 Feb 2020
Improving Molecular Design by Stochastic Iterative Target Augmentation
Kevin Kaichuang Yang
Wengong Jin
Kyle Swanson
Regina Barzilay
Tommi Jaakkola
27
26
0
11 Feb 2020
Exploring Chemical Space using Natural Language Processing Methodologies for Drug Discovery
Hakime Öztürk
Arzucan Özgür
P. Schwaller
Teodoro Laino
Elif Özkirimli
27
116
0
10 Feb 2020
Multi-Objective Molecule Generation using Interpretable Substructures
Wengong Jin
Regina Barzilay
Tommi Jaakkola
19
23
0
08 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
A deep-learning view of chemical space designed to facilitate drug discovery
P. Maragakis
Hunter M. Nisonoff
B. Cole
D. Shaw
34
28
0
07 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
64
425
0
26 Jan 2020
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition
S. Raschka
Benjamin Kaufman
AI4CE
24
67
0
17 Jan 2020
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
31
63
0
23 Nov 2019
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
28
63
0
13 Nov 2019
MAME : Model-Agnostic Meta-Exploration
Swaminathan Gurumurthy
Sumit Kumar
Katia P. Sycara
18
16
0
11 Nov 2019
Multiple-objective Reinforcement Learning for Inverse Design and Identification
Haoran Wei
Mariefel V. Olarte
Garrett B. Goh
AI4CE
11
3
0
09 Oct 2019
Semantic Preserving Generative Adversarial Models
Shahar Harel
Meir Maor
A. Ronen
GAN
27
0
0
07 Oct 2019
Previous
1
2
3
4
5
6
Next