ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.03439
  4. Cited By
Frequentist Consistency of Variational Bayes

Frequentist Consistency of Variational Bayes

9 May 2017
Yixin Wang
David M. Blei
    BDL
ArXivPDFHTML

Papers citing "Frequentist Consistency of Variational Bayes"

18 / 18 papers shown
Title
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
26
1
0
14 Oct 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference
  Algorithms
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Burkner
Lu Zhang
Bob Carpenter
Aki Vehtari
29
6
0
06 Jul 2024
Simplifying Deep Temporal Difference Learning
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
57
14
0
05 Jul 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
60
2
0
20 Mar 2024
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
21
4
0
21 Apr 2023
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
18
5
0
21 Dec 2022
Generalization Gap in Amortized Inference
Generalization Gap in Amortized Inference
Mingtian Zhang
Peter Hayes
David Barber
BDL
CML
DRL
33
14
0
23 May 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
22
25
0
20 Dec 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
The computational asymptotics of Gaussian variational inference and the
  Laplace approximation
The computational asymptotics of Gaussian variational inference and the Laplace approximation
Zuheng Xu
Trevor Campbell
11
7
0
13 Apr 2021
Spike and slab variational Bayes for high dimensional logistic
  regression
Spike and slab variational Bayes for high dimensional logistic regression
Kolyan Ray
Botond Szabó
Gabriel Clara
13
28
0
22 Oct 2020
Statistical Guarantees and Algorithmic Convergence Issues of Variational
  Boosting
Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting
B. Guha
A. Bhattacharya
D. Pati
19
2
0
19 Oct 2020
Dynamics of coordinate ascent variational inference: A case study in 2D
  Ising models
Dynamics of coordinate ascent variational inference: A case study in 2D Ising models
Sean Plummer
D. Pati
A. Bhattacharya
12
18
0
13 Jul 2020
Consistency of Variational Bayes Inference for Estimation and Model
  Selection in Mixtures
Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
35
52
0
14 May 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
25
681
0
15 Nov 2017
Asymptotic normality of maximum likelihood and its variational
  approximation for stochastic blockmodels
Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels
Peter J. Bickel
David S. Choi
Xiangyu Chang
Hai Zhang
57
217
0
04 Jul 2012
A Bernstein-Von Mises Theorem for discrete probability distributions
A Bernstein-Von Mises Theorem for discrete probability distributions
S. Boucheron
Elisabeth Gassiat
101
49
0
14 Jul 2008
1