Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07057
Cited By
Masked Autoregressive Flow for Density Estimation
19 May 2017
George Papamakarios
Theo Pavlakou
Iain Murray
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Masked Autoregressive Flow for Density Estimation"
50 / 248 papers shown
Title
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
32
5
0
08 Jun 2021
Solving Schrödinger Bridges via Maximum Likelihood
Francisco Vargas
Pierre Thodoroff
Neil D. Lawrence
A. Lamacraft
OT
24
131
0
03 Jun 2021
Normalizing Flows for Knockoff-free Controlled Feature Selection
Derek Hansen
Brian Manzo
Jeffrey Regier
OOD
27
5
0
03 Jun 2021
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
17
15
0
25 Mar 2021
Flow-based Self-supervised Density Estimation for Anomalous Sound Detection
Kota Dohi
Takashi Endo
Harsh Purohit
Ryo Tanabe
Y. Kawaguchi
22
58
0
16 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
22
220
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
480
0
08 Mar 2021
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
24
50
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
17
23
0
19 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
11
7
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
187
0
01 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
24
14
0
26 Nov 2020
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
17
38
0
11 Nov 2020
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
19
1
0
04 Nov 2020
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
19
121
0
24 Oct 2020
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
27
79
0
20 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
109
46
0
19 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
28
12
0
07 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
22
62
0
23 Sep 2020
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
24
6
0
17 Sep 2020
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
19
19
0
27 Aug 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
44
147
0
13 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
19
19
0
10 Jul 2020
Learning Differential Equations that are Easy to Solve
Jacob Kelly
J. Bettencourt
Matthew J. Johnson
D. Duvenaud
28
111
0
09 Jul 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
13
22
0
26 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
24
59
0
22 Jun 2020
STEER: Simple Temporal Regularization For Neural ODEs
Arna Ghosh
Harkirat Singh Behl
Emilien Dupont
Philip H. S. Torr
Vinay P. Namboodiri
BDL
AI4TS
21
74
0
18 Jun 2020
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
23
10
0
18 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
92
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
19
169
0
16 Jun 2020
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
16
32
0
09 Jun 2020
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
Hyeongju Kim
Hyeonseung Lee
Woohyun Kang
Joun Yeop Lee
N. Kim
3DPC
17
114
0
08 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
19
28
0
02 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
35
39
0
29 May 2020
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
24
51
0
27 May 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
25
176
0
21 Apr 2020
Deep Normalization for Speaker Vectors
Yunqi Cai
Lantian Li
Dong Wang
Andrew Abel
34
25
0
07 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha
Matthew O'Kelly
Hongrui Zheng
Rahul Mangharam
John C. Duchi
Russ Tedrake
OffRL
66
26
0
09 Mar 2020
Gravitational-wave parameter estimation with autoregressive neural network flows
Stephen R. Green
C. Simpson
J. Gair
BDL
83
87
0
18 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows
Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs M. Bergmann
Roland Vollgraf
BDL
AI4TS
AI4CE
24
179
0
14 Feb 2020
Previous
1
2
3
4
5
Next