ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07120
  4. Cited By
VAE with a VampPrior

VAE with a VampPrior

19 May 2017
Jakub M. Tomczak
Max Welling
    GAN
    BDL
ArXivPDFHTML

Papers citing "VAE with a VampPrior"

50 / 109 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
B. Peters
Michael Solomon
31
0
0
10 May 2025
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Theodoros Kouzelis
Ioannis Kakogeorgiou
Spyros Gidaris
N. Komodakis
DRL
75
5
0
17 Feb 2025
Value of Information and Reward Specification in Active Inference and
  POMDPs
Value of Information and Reward Specification in Active Inference and POMDPs
Ran Wei
49
3
0
13 Aug 2024
ParamReL: Learning Parameter Space Representation via Progressively
  Encoding Bayesian Flow Networks
ParamReL: Learning Parameter Space Representation via Progressively Encoding Bayesian Flow Networks
Zhangkai Wu
Xuhui Fan
Jin Li
Zhilin Zhao
Hui Chen
LongBing Cao
44
2
0
24 May 2024
On Kernel-based Variational Autoencoder
On Kernel-based Variational Autoencoder
Tian Qin
Wei-Min Huang
DRL
BDL
58
1
0
21 May 2024
Beyond Traditional Single Object Tracking: A Survey
Beyond Traditional Single Object Tracking: A Survey
Omar Abdelaziz
Mohamed Shehata
Mohamed Mohamed
35
0
0
16 May 2024
Boosting Flow-based Generative Super-Resolution Models via Learned Prior
Boosting Flow-based Generative Super-Resolution Models via Learned Prior
Li-Yuan Tsao
Yi-Chen Lo
Chia-Che Chang
Hao-Wei Chen
Roy Tseng
Chien Feng
Chun-Yi Lee
SupR
19
4
0
16 Mar 2024
Graph Out-of-Distribution Generalization via Causal Intervention
Graph Out-of-Distribution Generalization via Causal Intervention
Qitian Wu
Fan Nie
Chenxiao Yang
Tianyi Bao
Junchi Yan
OODD
OOD
AI4CE
35
18
0
18 Feb 2024
The VampPrior Mixture Model
The VampPrior Mixture Model
Andrew Stirn
David A. Knowles
BDL
24
1
0
06 Feb 2024
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
29
4
0
13 Nov 2023
Diffusion Models with Deterministic Normalizing Flow Priors
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
29
2
0
03 Sep 2023
Explainable Recommender with Geometric Information Bottleneck
Explainable Recommender with Geometric Information Bottleneck
Hanqi Yan
Lin Gui
Menghan Wang
Kun Zhang
Yulan He
13
2
0
09 May 2023
TC-VAE: Uncovering Out-of-Distribution Data Generative Factors
Cristian Meo
Anirudh Goyal
Justin Dauwels
DRL
CoGe
CML
27
1
0
08 Apr 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
24
1
0
24 Mar 2023
Uncertainty-Aware Pedestrian Trajectory Prediction via Distributional
  Diffusion
Uncertainty-Aware Pedestrian Trajectory Prediction via Distributional Diffusion
Yao Liu
Zesheng Ye
Rui Wang
Binghao Li
Quan Z. Sheng
L. Yao
18
8
0
15 Mar 2023
A Comprehensive Survey of AI-Generated Content (AIGC): A History of
  Generative AI from GAN to ChatGPT
A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT
Yihan Cao
Siyu Li
Yixin Liu
Zhiling Yan
Yutong Dai
Philip S. Yu
Lichao Sun
29
504
0
07 Mar 2023
Discouraging posterior collapse in hierarchical Variational Autoencoders
  using context
Discouraging posterior collapse in hierarchical Variational Autoencoders using context
Anna Kuzina
Jakub M. Tomczak
BDL
DRL
23
1
0
20 Feb 2023
Variational Mixture of HyperGenerators for Learning Distributions Over
  Functions
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Batuhan Koyuncu
Pablo Sánchez-Martín
I. Peis
Pablo Martínez Olmos
Isabel Valera
BDL
GAN
DRL
14
5
0
13 Feb 2023
Prior Density Learning in Variational Bayesian Phylogenetic Parameters
  Inference
Prior Density Learning in Variational Bayesian Phylogenetic Parameters Inference
Amine M. Remita
Golrokh Vitae
Abdoulaye Baniré Diallo
BDL
16
0
0
06 Feb 2023
ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models
ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models
Dongha Kim
Jaesung Hwang
Jongjin Lee
Kunwoong Kim
Yongdai Kim
OODD
26
1
0
11 Jan 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
27
10
0
01 Jan 2023
Latent Space Diffusion Models of Cryo-EM Structures
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
27
15
0
25 Nov 2022
Hub-VAE: Unsupervised Hub-based Regularization of Variational
  Autoencoders
Hub-VAE: Unsupervised Hub-based Regularization of Variational Autoencoders
Priya Mani
C. Domeniconi
BDL
SSL
DRL
18
0
0
18 Nov 2022
Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffusion
  Models
Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffusion Models
Simon Alexanderson
Rajmund Nagy
Jonas Beskow
G. Henter
DiffM
VGen
22
165
0
17 Nov 2022
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain
  MRI with Structured Variational Priors
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
J. Falet
Brennan Nichyporuk
Changjian Shui
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
19
2
0
15 Nov 2022
Towards Out-of-Distribution Sequential Event Prediction: A Causal
  Treatment
Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment
Chenxiao Yang
Qitian Wu
Qingsong Wen
Zhiqiang Zhou
Liang Sun
Junchi Yan
OODD
OOD
17
20
0
24 Oct 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
24
21
0
15 Sep 2022
Gromov-Wasserstein Autoencoders
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
15
11
0
15 Sep 2022
On the Convergence of the ELBO to Entropy Sums
On the Convergence of the ELBO to Entropy Sums
Jörg Lücke
Jan Warnken
31
3
0
07 Sep 2022
Tackling Multimodal Device Distributions in Inverse Photonic Design
  using Invertible Neural Networks
Tackling Multimodal Device Distributions in Inverse Photonic Design using Invertible Neural Networks
Michel Frising
J. Bravo-Abad
F. Prins
17
2
0
29 Aug 2022
Synthetic Data in Human Analysis: A Survey
Synthetic Data in Human Analysis: A Survey
Indu Joshi
Marcel Grimmer
Christian Rathgeb
Christoph Busch
F. Brémond
A. Dantcheva
20
46
0
19 Aug 2022
Innovations in Neural Data-to-text Generation: A Survey
Innovations in Neural Data-to-text Generation: A Survey
Mandar Sharma
Ajay K. Gogineni
Naren Ramakrishnan
29
10
0
25 Jul 2022
Generalized Identifiability Bounds for Mixture Models with Grouped
  Samples
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
Robert A. Vandermeulen
René Saitenmacher
20
2
0
22 Jul 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
21
11
0
14 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
19
30
0
13 Jul 2022
Text to Image Synthesis using Stacked Conditional Variational
  Autoencoders and Conditional Generative Adversarial Networks
Text to Image Synthesis using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks
Haileleol Tibebu
Aadin Malik
V. D. Silva
GAN
18
7
0
06 Jul 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
23
48
0
20 Jun 2022
Variational Autoencoders Without the Variation
Variational Autoencoders Without the Variation
Gregory A. Daly
J. Fieldsend
G. Tabor
17
2
0
01 Mar 2022
Variational Autoencoder with Disentanglement Priors for Low-Resource
  Task-Specific Natural Language Generation
Variational Autoencoder with Disentanglement Priors for Low-Resource Task-Specific Natural Language Generation
Zhuang Li
Lizhen Qu
Qiongkai Xu
Tongtong Wu
Tianyang Zhan
Gholamreza Haffari
CoGe
UD
DRL
36
4
0
27 Feb 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
65
17
0
22 Feb 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic
  Programming
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
18
21
0
07 Feb 2022
Generative Kernel Continual learning
Generative Kernel Continual learning
Mohammad Mahdi Derakhshani
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
VLM
33
0
0
26 Dec 2021
Gaussian Mixture Variational Autoencoder with Contrastive Learning for
  Multi-Label Classification
Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification
Junwen Bai
Shufeng Kong
Carla P. Gomes
SSL
DRL
19
36
0
02 Dec 2021
Contrastively Disentangled Sequential Variational Autoencoder
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
19
40
0
22 Oct 2021
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
  Prediction
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
Moitreya Chatterjee
N. Ahuja
A. Cherian
UQCV
VGen
BDL
36
17
0
06 Oct 2021
Towards Better Data Augmentation using Wasserstein Distance in
  Variational Auto-encoder
Towards Better Data Augmentation using Wasserstein Distance in Variational Auto-encoder
Zichuan Chen
Peng Liu
DRL
8
0
0
30 Sep 2021
LDC-VAE: A Latent Distribution Consistency Approach to Variational
  AutoEncoders
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
28
1
0
22 Sep 2021
Deep Dive into Semi-Supervised ELBO for Improving Classification
  Performance
Deep Dive into Semi-Supervised ELBO for Improving Classification Performance
Fahim Faisal Niloy
M. A. Amin
Akm Mahbubur Rahman
A. Ali
DRL
22
0
0
29 Aug 2021
Improving Variational Autoencoder based Out-of-Distribution Detection
  for Embedded Real-time Applications
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
25
17
0
25 Jul 2021
Invariance-based Multi-Clustering of Latent Space Embeddings for
  Equivariant Learning
Invariance-based Multi-Clustering of Latent Space Embeddings for Equivariant Learning
Chandrajit L. Bajaj
A. Roy
Haoran Zhang
BDL
DRL
21
1
0
25 Jul 2021
123
Next