ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07120
  4. Cited By
VAE with a VampPrior

VAE with a VampPrior

19 May 2017
Jakub M. Tomczak
Max Welling
    GAN
    BDL
ArXivPDFHTML

Papers citing "VAE with a VampPrior"

50 / 120 papers shown
Title
LDC-VAE: A Latent Distribution Consistency Approach to Variational
  AutoEncoders
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
28
1
0
22 Sep 2021
Deep Dive into Semi-Supervised ELBO for Improving Classification
  Performance
Deep Dive into Semi-Supervised ELBO for Improving Classification Performance
Fahim Faisal Niloy
M. A. Amin
Akm Mahbubur Rahman
A. Ali
DRL
25
0
0
29 Aug 2021
Improving Variational Autoencoder based Out-of-Distribution Detection
  for Embedded Real-time Applications
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
31
17
0
25 Jul 2021
Invariance-based Multi-Clustering of Latent Space Embeddings for
  Equivariant Learning
Invariance-based Multi-Clustering of Latent Space Embeddings for Equivariant Learning
Chandrajit L. Bajaj
A. Roy
Haoran Zhang
BDL
DRL
21
1
0
25 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
46
17
0
30 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
22
10
0
25 Jun 2021
Symmetric Wasserstein Autoencoders
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffM
GAN
26
0
0
24 Jun 2021
A learned conditional prior for the VAE acoustic space of a TTS system
A learned conditional prior for the VAE acoustic space of a TTS system
Panagiota Karanasou
S. Karlapati
Alexis Moinet
Arnaud Joly
Ammar Abbas
Simon Slangen
Jaime Lorenzo-Trueba
Thomas Drugman
22
7
0
14 Jun 2021
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
21
118
0
12 Jun 2021
PriorGrad: Improving Conditional Denoising Diffusion Models with
  Data-Dependent Adaptive Prior
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Sang-gil Lee
Heeseung Kim
Chaehun Shin
Xu Tan
Chang-Shu Liu
Qi Meng
Tao Qin
Wei Chen
Sung-Hoon Yoon
Tie-Yan Liu
DiffM
21
81
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
658
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
33
61
0
30 Apr 2021
Data Augmentation with Variational Autoencoders and Manifold Sampling
Data Augmentation with Variational Autoencoders and Manifold Sampling
Clément Chadebec
S. Allassonnière
DRL
16
23
0
25 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
480
0
08 Mar 2021
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
26
8
0
15 Dec 2020
Direct Evolutionary Optimization of Variational Autoencoders With Binary
  Latents
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
33
3
0
27 Nov 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
17
15
0
22 Oct 2020
Variational Dynamic Mixtures
Variational Dynamic Mixtures
Chen Qiu
Stephan Mandt
Maja R. Rudolph
BDL
AI4TS
16
2
0
20 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
79
16
0
19 Oct 2020
Controlling the Interaction Between Generation and Inference in
  Semi-Supervised Variational Autoencoders Using Importance Weighting
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
21
1
0
13 Oct 2020
Representation Learning for Sequence Data with Deep Autoencoding
  Predictive Components
Representation Learning for Sequence Data with Deep Autoencoding Predictive Components
Junwen Bai
Weiran Wang
Yingbo Zhou
Caiming Xiong
SSL
AI4TS
27
12
0
07 Oct 2020
Self-Supervised Variational Auto-Encoders
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
30
13
0
05 Oct 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
M. Pantic
Yannis Panagakis
GAN
DRL
13
17
0
09 Sep 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
36
50
0
16 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
31
67
0
15 Jun 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
End-to-end Sinkhorn Autoencoder with Noise Generator
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
22
22
0
11 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
16
32
0
09 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
11
10
0
08 Jun 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
25
7
0
12 May 2020
Interpreting Rate-Distortion of Variational Autoencoder and Using Model
  Uncertainty for Anomaly Detection
Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection
Seonho Park
George Adosoglou
P. Pardalos
DRL
UQCV
34
16
0
05 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
34
61
0
27 Apr 2020
Adversarial Latent Autoencoders
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GAN
DRL
40
259
0
09 Apr 2020
Characterizing and Avoiding Problematic Global Optima of Variational
  Autoencoders
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
11
4
0
17 Mar 2020
Deterministic Decoding for Discrete Data in Variational Autoencoders
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
21
8
0
04 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
21
21
0
26 Feb 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
22
96
0
18 Feb 2020
Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings
Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings
Shweta Mahajan
Iryna Gurevych
Stefan Roth
DRL
13
36
0
16 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
22
39
0
12 Feb 2020
Hypernetwork approach to generating point clouds
Hypernetwork approach to generating point clouds
P. Spurek
Sebastian Winczowski
Jacek Tabor
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
3DPC
37
34
0
10 Feb 2020
RecVAE: a New Variational Autoencoder for Top-N Recommendations with
  Implicit Feedback
RecVAE: a New Variational Autoencoder for Top-N Recommendations with Implicit Feedback
Ilya Shenbin
Anton M. Alekseev
E. Tutubalina
Valentin Malykh
Sergey I. Nikolenko
BDL
DRL
14
196
0
24 Dec 2019
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
14
75
0
23 Dec 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
14
179
0
06 Nov 2019
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating
  Mechanisms
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms
Daeryong Kim
B. Suh
22
50
0
03 Nov 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
28
0
0
04 Oct 2019
Variable Rate Deep Image Compression With a Conditional Autoencoder
Variable Rate Deep Image Compression With a Conditional Autoencoder
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
DRL
22
223
0
11 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
18
15
0
09 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
111
25
0
05 Sep 2019
Previous
123
Next